전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Articles Service

Supplementary
Share this article on :

Related articles in JMB

More Related Articles

Research article

References

  1. Organization WH. 2018. GLOBAL TUBERCULOSIS REPORT 2018. http://www.who.int/tb/publications/global_report/en/.
  2. Rîmbu C, Danac R, Pui A. 2014. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands. Chem. Pharm. Bull. (Tokyo) 62: 12-15.
    Pubmed CrossRef
  3. Chaudhary NK, Mishra P. 2017. Metal complexes of a novel schiff base based on penicillin: characterization, molecular modeling, and antibacterial activity study. Bioinorg. Chem. Appl. 2017: 6927675.
    Pubmed PMC CrossRef
  4. Siddappa K, Mayana NS. 2014. Synthesis, spectroscopic characterization, and biological evaluation studies of 5bromo-3-(((hydroxy-2-methylquinolin-7-yl)methylene)hydrazono) indolin-2-one and its metal (II) complexes. Bioinorg. Chem. Appl. 2014: 483282.
    Pubmed PMC CrossRef
  5. Andiappan K, Sanmugam A, Deivanayagam E, Karuppasamy K, Kim HS, Vikraman D. 2018. In vitro cytotoxicity activity of novel Schiff base ligand-lanthanide complexes. Sci. Rep. 8(1): 3054.
    Pubmed PMC CrossRef
  6. Zhang X, Bi C, Fan Y, Cui Q, Chen D, Xiao Y, et al. 2008. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. Int. J. Mol. Med. 22: 677-682.
  7. Li L, Guo Q, Dong J, Xu T, Li J. 2013. DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper(II) complex with taurine Schiff base and 1,10-phenanthroline. J. Photochem. Photobiol. B. 125: 56-62.
    Pubmed CrossRef
  8. Yuan R, Diao Y, Zhang W, Lin Y, Huang S, Zhang H, et al. 2014. In vitro activity of taurine-5-bromosalicylaldehyde Schiff base against planktonic and biofilm cultures of methicillinresistant Staphylococcus aureus. J. Microbiol. Biotechnol. 24: 1059-1064.
    Pubmed CrossRef
  9. Zhang W, Jones VC, Scherman MS, Mahapatra S, Crick D, Bhamidi S, et al. 2008. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase. Int. J. Biochem. Cell Biol. 40: 2560-2571.
    Pubmed PMC CrossRef
  10. Chen Y, Xu Y, Yang S, Li S, Ding W, Zhang W. 2019. Deficiency of D-alanyl-D-alanine ligase A attenuated cell division and greatly altered the proteome of Mycobacterium smegmatis. MicrobiologyOpen 3: e819.
    Pubmed CrossRef
  11. Yang S, Xu Y, Wang Y, Ren F, Li S, Ding W, et al. 2018. The biological properties and potential interacting proteins of DalanylD-alanine ligase A from Mycobacterium tuberculosis. Molecules 23: E324.
    Pubmed PMC CrossRef
  12. Marland Z, Beddoe T, Zaker-Tabrizi L, Coppel RL, Crellin PK, Rossjohn J. 2005. Expression, purification, crystallization and preliminary X-ray diffraction analysis of an essential lipoprotein implicated in cell-wall biosynthesis in Mycobacteria. Acta crystallogr. Sec. F, Struct. Biol. Cryst. Commun. 61: 1081-1083.
    Pubmed PMC CrossRef
  13. Pan F, Jackson M, Ma Y, McNeil M. 2001. Cell wall core galactofuran synthesis is essential for growth of mycobacteria. J. Bacteriol. 183: 3991-3998.
    Pubmed PMC CrossRef
  14. Kieser KJ, Baranowski C, Chao MC, Long JE, Sassetti CM, Waldor MK, et al. 2015. Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc. Nat. Acad. Sci. USA 112: 13087-13092.
    Pubmed PMC CrossRef
  15. Rombouts Y, Brust B, Ojha AK, Maes E, Coddeville B, ElassRochard E, et al. 2012. Exposure of mycobacteria to cell wallinhibitory drugs decreases production of arabinoglycerolipid related to Mycolyl-arabinogalactan-peptidoglycan metabolism. J. Biol. Chem. 287: 11060-11069.
    Pubmed PMC CrossRef
  16. Alderwick LJ, Harrison J, Lloyd GS, Birch HL. 2015. The mycobacterial cell wall--peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. 5: a021113.
    Pubmed PMC CrossRef
  17. Jankute M, Cox JA, Harrison J, Besra GS. 2015. Assembly of the mycobacterial cell wall. Ann. Rev. Microbiol. 69: 405-423.
    Pubmed CrossRef
  18. Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514.
    Pubmed PMC CrossRef
  19. Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270.
    Pubmed PMC CrossRef
  20. Peters NT, Dinh T, Bernhardt TG. 2011. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J. Bacteriol. 193: 4973-4983.
    Pubmed PMC CrossRef
  21. Yang DC, Tan K, Joachimiak A, Bernhardt TG. 2012. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol. Microbiol. 85: 768-781.
    Pubmed PMC CrossRef
  22. Chauviac F-X, Bommer M, Yan J, Parkin G, Daviter T, Lowden P, et al. 2012. Crystal structure of reduced MsAcg, a putative nitroreductase from mycobacterium smegmatisand a close homologue of mycobacterium tuberculosis Acg. J. Biol. Chem. 287: 44372-44383.
    Pubmed PMC CrossRef
  23. Pitsawong W, Haynes CA, Koder RL, Jr., Rodgers DW, Miller AF. 2017. Mechanism-informed refinement reveals altered substrate-binding mode for catalytically competent nitroreductase. Structure 25: 978-987.
    Pubmed PMC CrossRef
  24. Cortial S, Chaignon P, Iorga BI, Aymerich S, Truan G, Gueguen-Chaignon V, et al. 2010. NADH oxidase activity of Bacillus subtilis nitroreductase NfrA1: insight into its biological role. FEBS Lett. 584: 3916-3922.
    Pubmed CrossRef
  25. Hektor HJ, Kloosterman H, Dijkhuizen L. 2002. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J. Biol. Chem. 277: 46966-46973.
    Pubmed CrossRef
  26. Liu H, Yang M, He ZG. 2016. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis. Sci. Rep. 6: 27489.
    Pubmed PMC CrossRef
  27. Titgemeyer F, Amon J, Parche S, Mahfoud M, Bail J, Schlicht M, et al. 2007. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 189: 5903-5915.
    Pubmed PMC CrossRef
  28. Valente W, Pienaar E, Fast A, Fluitt A, Whitney S, Fenton R, et al. 2009. A Kinetic Study of In vitro lysis of mycobacterium smegmatis. Chem. Eng. Sci. 64: 1944-1952.
    Pubmed PMC CrossRef
  29. Agrawal P, Miryala S, Varshney U. 2015. Use of Mycobacterium smegmatis deficient in ADP-ribosyltransferase as surrogate for Mycobacterium tuberculosis in drug testing and mutation analysis. PLoS One 10: e0122076.
    Pubmed PMC CrossRef
  30. Namouchi A, Cimino M, Favre-Rochex S, Charles P, Gicquel B. 2017. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery. BMC Genomics 18(1): 530.
    Pubmed PMC CrossRef
  31. Verma A, Sampla AK, Tyagi JS. 1999. Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. J. Bacteriol. 181: 4326-4333.
  32. Manca C, Paul S, Barry CEr, Freedman VH, Kaplan G. 1999. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67: 74-79.