전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Aisien FA, Chiadikobi JC, Aisien ET. 2009. Toxicity assessment of some crude oil contaminated soils in the Niger delta. Adv. Mat. Res. 62: 451-455.
    CrossRef
  2. Fatima K, Imran A, Naveed M, Afzal M. 2017. Plant-bacteria synergism: An innovative approach for the remediation of crude oilcontaminated soils. Soil Environ. 36: 93-113.
    CrossRef
  3. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R. 2015. Ecological implications of motor oil pollution: earthworm survival and soil health. Soil Biol. Biochem. 85: 72-81.
    CrossRef
  4. Hussain F, Hussain I, Khan AHA, Muhammad YS, Iqbal M, Soja G, et al. 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153: 80-88.
    CrossRef
  5. Nwinyi OC, Olawore YA. 2017. Biostimulation of spent engine oil contaminated soil using Ananas comosus and Solanum tuberosum peels. Environ. Technol. Innov. 8: 373-388.
    CrossRef
  6. Zhou B, Wang Y, Feng Y, Lin, X. 2016. The application of rapidly composted manure decreases paddy CH4 emission by adversely influencing methanogenic archaeal community: a greenhouse study. J. Soil. Sediment 16: 1889-1900.
    CrossRef
  7. Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, et al. 2019. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol. Biochem. 129: 191-200.
    CrossRef
  8. Yang J, Li G, Qian Y, Zhang F. 2018. Increased soil methane emissions and methanogenesis in oil contaminated areas. Land Degrad. Dev. 29: 563-571.
    CrossRef
  9. United States Environmental Protection Agency. Understanding Global Warming Potentials, 2017. Available from https://www.epa.gov/ghgemissions/understanding-global-warming-potentials. Accessed Jun. 13, 2020.
  10. Thapa B, Kc AK, Ghimire A. 2012. A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ. J. Sci. Eng. Technol. 8: 164-170.
    CrossRef
  11. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, et al. 2008. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451: 176-180.
    Pubmed CrossRef
  12. Gu Y, Wang P, Kong, CH. 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur. J. Soil. Biol. 45: 436-441.
    CrossRef
  13. Bremner JM, Tabatabai MA. 1973. Effects of some inorganic substances on TTC assay of dehydrogenase activity in soils. Soil Biol. Biochem. 5: 385-386.
    CrossRef
  14. Cui P, Fan F, Yin C, Song A, Huang P, Tang Y, et al. 2016. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil. Biol. Biochem. 93: 131-141.
    CrossRef
  15. Jung HK, Oh KC, Ryu HW, Jeon JM, Cho KS. 2019. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. Waste Manag. 100: 45-56.
    Pubmed CrossRef
  16. Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13: 656-668.
    Pubmed PMC CrossRef
  17. Kim TG, Moon KE, Lee EH, Choi SA, Cho KS. 2011. Assessing effects of earthworm cast on methanotrophic community in a soil biocover by concurrent use of microarray and quantitative real-time PCR. Appl. Soil Ecol. 50: 52-55.
    CrossRef
  18. Wasmund K, Burns KA, Kurtböke DI, Bourne DG. 2009. Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl. Environ. Microbiol. 75: 7391-7398.
    Pubmed PMC CrossRef
  19. Kolb S, Knief C, Stubner S, Conrad R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69: 2423-2429.
    Pubmed PMC CrossRef
  20. Kim TG, Lee EH, Cho KS. 2012. Microbial community analysis of a methane-oxidizing biofilm using ribosomal tag pyrosequencing. J. Microbiol. Biotechnol. 22: 360-370.
    Pubmed CrossRef
  21. Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 215: 383-93.
    CrossRef
  22. Afegbua SL, Batty LC. 2019. Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Int. J. Phytoremediation 21: 200-208.
    Pubmed CrossRef
  23. Riskuwa-Shehu ML, Ijah UJJ, Manga SB, Bilbis LS. 2017. Evaluation of the use of legumes for biodegradation of petroleum hydrocarbons in soil. Int. J. Environ. Sci. Technol. 14: 2205-2214.
    CrossRef
  24. Shahzad A, Saddiqui S, Bano A. 2016. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int. J. Phytoremediation 18: 521-526.
    Pubmed CrossRef
  25. Kaimi E, Mukaidani T, Tamaki M. 2007. Effect of rhizodegradation in diesel-contaminated soil under different soil conditions. Plant Prod. Sci. 10: 105-111.
    CrossRef
  26. Allison SD, Martiny JB. 2008. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105: 11512-11519.
    Pubmed PMC CrossRef
  27. Liu Q, Li Q, Wang N, Liu D, Zan L, Chang L, et al. 2018. Bioremediation of petroleum-contaminated soil using aged refuse from landfills. Waste Manag. 77: 576-585.
    Pubmed CrossRef
  28. Beesley L, Moreno-Jiménez E, Gomez-Eyles JL. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158: 2282-2287.
    Pubmed CrossRef
  29. Vouillamoz J, Milke MW. 2001. Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci. Technol. 43: 291-295.
    CrossRef
  30. Wright EL, Black CR, Turner BL, Sjögersten S. 2013. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland. Glob. Change Biol. 19: 3775-3789.
    Pubmed CrossRef
  31. Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytol. 197: 524-531.
    Pubmed CrossRef
  32. Hayashi K, Tokida T, Kajiura M, Yanai Y, Yano M. 2015. Cropland soil-plant systems control production and consumption of methane and nitrous oxide and their emissions to the atmosphere. J. Soil Sci. Plant Nutr. 61: 2-33.
    CrossRef
  33. Wang Y, Hu C, Ming H, Oenema O, Schaefer DA, Dong W, et al. 2014. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain. PLoS One 9: e98445.
    Pubmed PMC CrossRef
  34. Lehman RM, Osborne SL. 2013. Greenhouse gas fluxes from no-till rotated corn in the upper midwest. Agric. Ecosyst. Environ. 170: 1-9.
    CrossRef
  35. Johnson JM, Archer D, Barbour N. 2010. Greenhouse gas emission from contrasting management scenarios in the northern Corn Belt. Soil Sci. Soc. Am. J. 74: 396-406.
    CrossRef
  36. Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289: 1922-1925.
    Pubmed CrossRef
  37. Breidenbach B, Brenzinger K, Brandt FB, Blaser MB, Conrad R. 2017. The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots. Plant Soil 419: 435-445.
    CrossRef
  38. Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, et al. 2012. Evidence for methane production by saprotrophic fungi. Nat. Commun. 3: 1046.
    Pubmed CrossRef
  39. Luo S, Wang S, Tian L, Li S, Li X, Shen Y, Tian C. 2017. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl. Soil Ecol. 117: 10-15.
    CrossRef
  40. Yuan J, Yuan Y, Zhu Y, Cao L. 2018. Effects of different fertilizers on methane emissions and methanogenic community in paddy rhizosphere soil. Sci. Total Environ. 627: 770-781.
    Pubmed CrossRef
  41. Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O. 2006. Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manag. 26: 381-388.
    Pubmed CrossRef
  42. Seghers D, Siciliano SD, Top EM, Verstraete W. 2005. Combined effect of fertilizer and herbicide applications on the abundance, community and performance of the soil methanotrophic community. Soil. Biol. Biochem. 37: 187-193.
    CrossRef
  43. Choi HJ, Ryu HW, Cho KS. 2018. Biocomplex textile as an alternative daily cover for the simultaneous mitigation of methane and malodorous compounds. Waste Manag. 72: 339-348.
    Pubmed CrossRef
  44. Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. 2011. The membrane‐associated monooxygenase in the butane‐oxidizing Gram‐positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ. Microbiol. Rep.  3: 390-396.
    Pubmed CrossRef
  45. Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L. 2013. Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie Van Leeuwenhoek. 103: 485-491.
    Pubmed CrossRef
  46. Striebich RC, Smart CE, Gunasekera TS, Mueller SS, Strobel EM, McNichols BW, et al. 2014. Characterization of the F-76 diesel and Jet-A aviation fuel hydrocarbon degradation profiles of Pseudomonas aeruginosa and Marinobacter hydrocarbonoclasticus. Int. Biodeterior. Biodegradation 93: 33-43.
    CrossRef
  47. Singleton alDR. 2017. Description of Immundisolibacter cernigliae gen. nov., sp. nov., a high-molecularweight polycyclic aromatic hydrocarbon-degrading bacterium within the class Gammaproteobacteria, and proposal of Immundisolibacterales ord. nov. and Immundisolibacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 67: 925-931.
    Pubmed PMC CrossRef
  48. Anthony C. 1982. The Biochemistry of methylotrophs, pp. 2-3. Vol. 439. Academic Press, London.
  49. Dunfield PF, Belova SE, Vorob'ev AV, Cornish SL, Dedysh SN. 2010. Methylocapsa aurea sp. nov. a facultative methanotroph possessing a particulate methane monooxygenase and emended description of the genus Methylocapsa. Int. J. Syst. Evol. Microbiol. 60: 2659-2664.
    Pubmed CrossRef
  50. Shimkets SNLJ. 2001. Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type 1 methanotrophs. Int. J. Syst. Evol. Microbiol.  51: 611-621.
    Pubmed CrossRef

Related articles in JMB

More Related Articles