전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008.
    CrossRef
  2. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17: 441-448.
    Pubmed PMC CrossRef
  3. Balcázar JL, Subirats J, Borrego CM. 2015. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 6: 1216.
    Pubmed PMC CrossRef
  4. Brown DR. 2019. Nitrogen starvation induces persister cell formation in Escherichia coli. J. Bacteriol. 201: e00622-18.
    Pubmed PMC CrossRef
  5. Bruhn-Olszewska B, Szczepaniak P, Matuszewska E, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Moruno Algara M, et al. 2018. Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol. Res. 209: 33-42.
    Pubmed CrossRef
  6. Chulluncuy R, Espiche C, Nakamoto J, Fabbretti A, Milón P. 2016. Conformational response of 30S-bound IF3 to A-site binders streptomycin and kanamycin. Antibiotics. 5: 38.
    Pubmed PMC CrossRef
  7. Churchward CP, Alany RG, Snyder LAS. 2018. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 44: 561-570.
    Pubmed CrossRef
  8. Ciofu O, Tolker-Nielsen T. 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 10: 913.
    Pubmed PMC CrossRef
  9. Davies DG, Marques CNH. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191: 1393-1403.
    Pubmed PMC CrossRef
  10. Dayrit FM. 2015. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 92: 1-15.
    CrossRef
  11. Delcour AH. 2009. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta - Proteins Proteomics. 1794: 808-816.
    Pubmed PMC CrossRef
  12. Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85: 1629-1642.
    Pubmed CrossRef
  13. Dubois-Brissonnet F, Trotier E, Briandet R. 2016. The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front. Microbiol. 7: 1673.
    Pubmed PMC CrossRef
  14. Fair RJ, Tor Y. 2014. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6: 25-64.
    Pubmed PMC CrossRef
  15. Fang K, Jin X, Hong SH. 2018. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 8: 4939.
    Pubmed PMC CrossRef
  16. Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15: 453-464.
    Pubmed CrossRef
  17. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14: 563-575.
    Pubmed CrossRef
  18. Fujita Y, Matsuoka H, Hirooka K. 2007. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 66: 829-839.
    Pubmed CrossRef
  19. Gollan B, Grabe G, Michaux C, Helaine S. 2019. Bacterial persisters and infection: past, present, and progressing. Annu. Rev. Microbiol. 73: 359-385.
    Pubmed CrossRef
  20. Goneau LW, Yeoh NS, MacDonald KW, Cadieux PA, Burton JP, Razvi H, et al. 2014. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob. Agents Chemother. 58: 2089-2097.
    Pubmed PMC CrossRef
  21. Hall CW, Mah T-F. 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 010: 276-301.
    Pubmed CrossRef
  22. Jaishankar J, Srivastava P. 2017. Molecular basis of stationary phase survival and applications. Front. Microbiol. 8: 2000.
    Pubmed PMC CrossRef
  23. Jimenez-Diaz L, Caballero A, Segura A. 2017. Pathways for the degradation of fatty acids in bacteria. In: Aerobic Utilization of Hydrocarbons, Oils and Lipids. Springer International Publishing.
    CrossRef
  24. Jin AX., Kightlinger W., Kwon Y.-C., and Hong S.H. 2018. Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synth. Biol. 3: ysy004.
    Pubmed PMC CrossRef
  25. Karki P, Mohiuddin SG, Kavousi P, Orman MA. 2020. Investigating the effects of osmolytes and environmental pH on bacterial persisters. Antimicrob. Agents Chemother. 64: e02393-19.
    Pubmed PMC CrossRef
  26. Kim HS, Ham SY, Jang Y, Sun PF, Park JH, Hoon Lee, Park HD. 2019. Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel 253: 754-761.
    CrossRef
  27. Krzyżek P, Gościniak G. 2018. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. Turk. J. Gastroenterol. 29: 7-13.
    Pubmed PMC CrossRef
  28. Kumar GP., Lee J.H., Beyenal H., and Lee J. 2020. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 28: 753-768.
    Pubmed CrossRef
  29. Liaw S-J, Lai H-C, Wang W-B. 2004. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect. Immun. 72: 6836-6845.
    Pubmed PMC CrossRef
  30. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157: 539-548.
    Pubmed CrossRef
  31. Marques CNH, Davies DG, Sauer K. 2015. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8: 816-835.
    Pubmed PMC CrossRef
  32. Marques CNH, Morozov A, Planzos P, Zelaya HM. 2014. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl. Environ. Microbiol. 80: 6976-6991.
    Pubmed PMC CrossRef
  33. McGaw LJ, Jäger AK, van Staden J. 2002. Antibacterial effects of fatty acids and related compounds from plants. South Afr. J. Bot. 68: 417-423.
    CrossRef
  34. McKay SL, Portnoy DA. 2015. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob. Agents Chemother. 59: 6992-6999.
    Pubmed PMC CrossRef
  35. Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34: 877-886.
    Pubmed CrossRef
  36. Petrovic S, Arsic A. 2016. Fatty acids: fatty acids. In: Encyclopedia of Food and Health. Elsevier Inc.
    CrossRef
  37. Poole K. 2012. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20: 227-234.
    Pubmed CrossRef
  38. Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. 2017. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob. Resist. Infect. Control 6: 1-11.
    Pubmed PMC CrossRef
  39. Salisbury A-M, Woo K, Sarkar S, Schultz G, Malone M, Mayer DO, et al. 2018. Tolerance of biofilms to antimicrobials and significance to antibiotic resistance in wounds. Surg. Technol. Int. 33: 59-66.
  40. Schuster CF, Mechler L, Nolle N, Krismer B, Zelder M-E, Götz F, et al. 2015. The MazEF toxin-antitoxin system alters the β-lactam susceptibility of Staphylococcus aureus. PLoS One 10: e0126118.
    Pubmed PMC CrossRef
  41. Shan Y, Lazinski D, Rowe S, Camilli A, Lewis K. 2015. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio 6: e00078-15.
    Pubmed PMC CrossRef
  42. Shao X, Fang K, Medina D, Wan J, Lee JL, Hong SH. 2019. The probiotic, Leuconostoc mesenteroides, inhibits Listeria monocytogenes biofilm formation. J. Food Saf. 40: e12750.
    CrossRef
  43. Shilling M, Matt L, Rubin E, Visitacion MP, Haller NA, Grey SF, et al. 2013. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. J. Med. Food 16: 1079-1085.
    Pubmed CrossRef
  44. Silva LN, Zimmer KR, Macedo AJ, Trentin DS. 2016. Plant natural products targeting bacterial virulence factors. Chem. Rev. 116: 9162-9236.
    Pubmed CrossRef
  45. Song S, Wood TK. 2020. A primary physiological role of toxin/antitoxin systems is phage inhibition. Front. Microbiol. 11: 1895.
    Pubmed PMC CrossRef
  46. Song S, Wood TK. 2020. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem. Biophys. Res. Commun. 523: 281-286.
    Pubmed CrossRef
  47. Wang M, Fang K, Hong SMC, Kim I, Jang IS, Hong SH. 2018. Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of Escherichia coli via antitoxin HipB. Appl. Microbiol. Biotechnol. 102: 8511-8524.
    Pubmed CrossRef
  48. Wood TK, Song S. 2020. Forming and waking dormant cells: the ppGpp ribosome dimerization persister model. Biofilm 2: 100018.
    Pubmed PMC CrossRef
  49. Yang H-T, Chen J-W, Rathod J, Jiang Y-Z, Tsai P-J, Hung Y-P, et al. 2017. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 8: 2635.
    Pubmed PMC CrossRef
  50. Yang QE, Walsh TR. 2017. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol. Rev. 41: 343-353.
    Pubmed PMC CrossRef
  51. Yoon BK, Jackman JA, Valle-González ER, Cho NJ. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19: 1114.
    Pubmed PMC CrossRef
  52. Zhou J, Velliou E, Hong SH. 2020. Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. LWT 133: 110115.
    CrossRef

Related articles in JMB

More Related Articles