전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Zheng JN, Negi A, Khomlaem C, Kim BS. 2019. Comparison of bioethanol production by Candida molischiana and Saccharomyces cerevisiae from glucose, cellobiose, and cellulose. J. Microbiol. Biotechnol. 29: 905-912.
    Pubmed
  2. Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V. 2018. Bioconversion of pentose sugars to value added chemicals and fuels:Recent trends, challenges and possibilities. Bioresour. Technol. 269: 443-451.
    Pubmed
  3. Tang HT, Hou J, Shen Y, Xu LL, Yang H, Fang X, et al. 2013. High beta-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J. Microbiol. Biotechnol. 23: 1577-1585.
    Pubmed
  4. Nijland JG, Vos E, Shin HY, de Waal PP, Klaassen P, Driessen AJ. 2016. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae. Biotechnol. Biofuels 9: 158.
    Pubmed PMC
  5. Liu H, Sun J, Chang JS, Shukla P. 2018. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit. Rev. Biotechnol. 38: 1089-1105.
    Pubmed
  6. Zou ZS, Zhao YY, Zhang TZ, Xu JX, He AY, Deng Y. 2018. Efficient isolation and characterization of a cellulase hyperproducing mutant strain of Trichoderma reesei. J. Microbiol. Biotechnol. 28: 1473-1481.
    Pubmed
  7. Xu Q, Singh A, Himmel ME. 2009. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 20: 364-371.
    Pubmed
  8. Li YH, Zhang XY, Zhang F, Peng LC, Zhang DB, Kondo A, et al. 2018. Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnol. Biofuels 11: 49.
    Pubmed PMC
  9. Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, et al. 2014. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. ScientificWorldJournal. 2014: 798683.
    Pubmed PMC
  10. Walker ME, Nguyen TD, Liccioli T, Schmid F, Kalatzis N, Sundstrom JF, et al. 2014. Genome-wide identification of the Fermentome;genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae. BMC Genomics 15: 552.
    Pubmed PMC
  11. Matsushika A, Goshima T, Hoshino T. 2014. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb. Cell Fact. 13: 16.
    Pubmed PMC
  12. Huang J, Wu R, Chen D, Wang Q, Huang R. 2016. Transcriptional profiling of the Trichoderma reesei recombinant strain HJ48 by RNA-Seq. J. Microbiol. Biotechnol. 26: 1242-1251.13.
    Pubmed
  13. Yang M, Xu L, Liu Y, Yang P. 2015. RNA-Seq uncovers SNPs and alternative splicing events in asian lotus (Nelumbo nucifera). PLoS One. 10: e0125702.
    Pubmed PMC
  14. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequencing and analysis of the biomassdegrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553-560.
  15. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14: R36.
    Pubmed PMC
  16. Anders S, Pyl PT, Huber W. 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-169.
    Pubmed PMC
  17. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628.
    Pubmed
  18. Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNAseq data. Bioinformatics 26: 136-138.
    Pubmed
  19. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B 1: 289-300.
  20. Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11: R106.
    Pubmed PMC
  21. Mao XZ, Cai T, Olyarchuk JG, Wei LP. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787-3793.
    Pubmed
  22. Li J, Lin L, Li H, Tian C, Ma Y. 2014. Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose. Biotechnol. Biofuels 7: 31.
    Pubmed PMC
  23. Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, et al. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90: 927-963.
    Pubmed PMC
  24. Matsushika A, Goshima T, Hoshino T. 2014. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb. Cell Fact. 13: 16.
    Pubmed PMC
  25. Runquist D, Hahn-Hagerdal B, Bettiga M. 2009. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb. Cell Fact. 8: 49.
    Pubmed PMC
  26. Rodriguez A, de la Cera T, Herrero P, Moreno F. 2001. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem. J. 355: 625-631.
    Pubmed PMC
  27. Brown SR, Staff M, Lee R, Love J, Parker DA, Aves SJ, et al. 2018. Design of experiments methodology to build a multifactorial statistical model describing the metabolic interactions of alcohol dehydrogenase isozymes in the ethanol biosynthetic pathway of the yeast Saccharomyces cerevisiae. Acs Synth. Biol. 7: 1676-1684.
    Pubmed
  28. Yao YX, Li M, Zhai H, You CX, Hao YJ. 2011. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J. Plant Physiol. 168: 474-480.
    Pubmed
  29. Zeng WY, Tang YQ, Gou M, Xia ZY, Kida K. 2016. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources. AMB Express 6: 51.
    Pubmed PMC
  30. Hossain S, Švec D, Mrša V, Teparić R. 2018. Overview of catalytic properties of fungal xylose reductases and molecular engineering approaches for improved xylose utilisation in yeast. Appl. Food Biotechnol. 5: 47-58.
  31. Li HB, Schmitz O, Alper HS. 2016. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl. Microbiol. Biotechnol. 100: 10215-10223.
    Pubmed
  32. Moyses DN, Reis VC, de Almeida JR, de Moraes LM, Torres FA. 2016. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int. J. Mol. Sci. 17: 207.
    Pubmed PMC
  33. Yang BX , Xie CY , Xia ZY, Wu YJ. 2020. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem. 95: 122-130.
  34. Hong Y, Dashtban M, Kepka G, Chen S, Qin W. 2014. Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Biomed. Res. Int. 2014: 169705.
    Pubmed PMC
  35. Perl A, Hanczko R, Telarico T, Oaks Z, Landas S. 2011. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol. Med. 17: 395-403.
    Pubmed PMC
  36. Souto-Maior AM, Runquist D, Hahn-Hagerdal B. 2009. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J. Biotechnol. 143: 119-123.
    Pubmed
  37. Kobayashi Y, Sahara T, Suzuki T, Kamachi S, Matsushika A, Hoshino T, et al. 2017. Genetic improvement of xylose metabolism by enhancing the expression of pentose phosphate pathway genes in Saccharomyces cerevisiae IR-2 for high-temperature ethanol production. J. Ind. Microbiol. Biotechnol. 44: 879-891.
    Pubmed
  38. Feng Q, Liu ZL, Weber SA, Li S. 2018. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. PLoS One 13: e0195633.
    Pubmed PMC
  39. Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK, Cate JHD. 2016. Bypassing the pentose phosphate pathway: towards modular utilization of xylose. PLoS One 11: e0158111.
    Pubmed PMC
  40. Kurylenko OO, Ruchala J, Vasylyshyn RV, Stasyk OV, Dmytruk OV, Dmytruk KV, et al. 2018. Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha. Biotechnol. Biofuels 11: 197.
    Pubmed PMC
  41. Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2002. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl. Environ. Microbiol. 68:1604-1609.
    Pubmed PMC
  42. Miskovic L, Alff-Tuomala S, Soh KC, Barth D, Salusjarvi L, Pitkanen JP, et al. 2017. A design-build-test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models. Biotechnol. Biofuels 10: 166.
    Pubmed PMC
  43. Matsushika A, Nagashima A, Goshima T, Hoshino T. 2013. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One 8: e69005.
    Pubmed PMC
  44. Hortschansky P, Eisendle M, Al-Abdallah Q, Schmidt AD, Bergmann S, Thon M, et al. 2007. Interaction of HapX with the CCAATbinding complex—a novel mechanism of gene regulation by iron. EMBO J. 26: 3157-3168.
    Pubmed PMC
  45. Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP. 2001. The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol. Genet. Genomics 266: 56-63.
    Pubmed
  46. Buschlen S, Amillet JM, Guiard B, Fournier A, Marcireau C, Bolotin-Fukuhara M. 2003. The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp. Funct. Genomics 4: 37-46.
    Pubmed PMC
  47. Kato M. 2014. An overview of the CCAAT-Box binding factor in filamentous fungi: assembly, nuclear translocation, and transcriptional enhancement. Biosci. Biotechnol. Biochem. 69: 663-672.
    Pubmed
  48. Young EM, Tong A, Bui H, Spofford C, Alper HS. 2014. Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc. Natl. Acad. Sci. USA 111: 131-136.
    Pubmed PMC
  49. Colabardini AC, Ries LNA, Brown NA, Reis TFd, Savoldi M, Goldman MHS, et al. 2014. Functional characterization of a xylose transporter in Aspergillus nidulans. Biotechnol. Biofuels. 7: 46.
    Pubmed PMC
  50. Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63: 554-569.
    Pubmed PMC
  51. MH Saier Jr, Beatty JT, Goffeau A, Harley KT, Heijne WHM, Huang SC, et al. 1999. The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1: 257-279.
  52. Sharma NK, Behera S, Arora R, Kumar S, Sani RK. 2018. Xylose transport in yeast for lignocellulosic ethanol production: current status. J. Biosci. Bioeng. 125: 259-267.
    Pubmed
  53. Du J, Li S, Zhao H. 2010. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. Biosyst. 6: 2150-2156.
    Pubmed
  54. Sloothaak J, Tamayo-Ramos JA, Odoni DI, Laothanachareon T, Derntl C, Mach-Aigner AR, et al. 2016. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnol. Biofuels 9: 148.
    Pubmed PMC

Related articles in JMB

More Related Articles