전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Furuse Y. 2019. Analysis of research intensity on infectious disease by disease burden reveals which infectious diseases are neglected by researchers. Proc. Natl. Acad. Sci. USA 116: 478-483.
    Pubmed PMC
  2. Hay SI, Abajobir AA, Abate KH. 2017. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390: 1260-1344.
  3. Rappuoli R. 2001. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19: 2688-2691.
  4. Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. 2013. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 16: 38-53.
    Pubmed
  5. Roche A, Hammerl JA, Appel B, Dieckmann R, Dahouk SA. 2015. FISHing for bacteria in food - A promising tool for the reliable detection of pathogenic bacteria?. Food Microbiol. 46: 395-407.
    Pubmed
  6. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. 2014. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 5: 258.
  7. Stewart EJ. 2012. Growing unculturable bacteria. J. Bacteriol. 194: 4151-4160.
    Pubmed PMC
  8. Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444.
    Pubmed PMC
  9. Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA. 2005. Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc. Natl. Acad. Sci. USA 102:19109-19114.
    Pubmed PMC
  10. Chapela MJ, Garrido-Maestu A, Cabado AG. 2015. Detection of foodborne pathogens by qPCR: a practical approach for food industry applications. Cogent. Food Agric. 1: 1-19.
  11. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl. Environ. Microbiol. 82: 2433-2443.
    Pubmed PMC
  12. Mohiuddin MM, Salama Y, Schellhorn HE, Golding GB. 2017. Shotgun metagenomic sequencing reveals freshwater beach sands as reservoir of bacterial pathogens. Water Res. 115: 360-369.
    Pubmed
  13. Iseki H, Alhassan A, Ohta N, Thekisoe OMM, Yokoyama N, et al. 2007. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simulttaneous detection of bovine Babesia parasites. J. Microbiol. Methods 71: 281-287.
    Pubmed
  14. Wylezich C, Papa A, Beer M, et al. 2018. A versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 8: 13108.
    Pubmed PMC
  15. Zolfo M, Tett A, Jousson O, Donati C, Segata N. 2017. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic. Acids Res. 45: e7.
    Pubmed PMC
  16. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. 2014 PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42: D581-D591.
    Pubmed PMC
  17. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33: D325-D328.
    Pubmed PMC
  18. Chan MS, Maiden MCJ, Spratt BG. 2001. Database-driven Multi Locus Sequence Typing (MLST) of bacterial pathogens. Bioinformatics 17: 1077-1083.
    Pubmed
  19. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. 2012. Multilocus sequence typing of total-genomesequenced bacteria. J. Clin. Microbiol. 50: 1355-1361.
    Pubmed PMC
  20. Cai L, Zhang T. 2013. Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ. Sci. Technol. 47: 5433-5441.
    Pubmed
  21. Waller AS, Yamada T, Kristensen DM, Kultima JR, Sunagawa S, Koonin E V, et al. 2014. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J. 8: 1391-1402.
    Pubmed PMC
  22. Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, et al. 2011. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect. Immun. 79: 4286-4298.
    Pubmed PMC
  23. Comas I, Homolka S, Niemann S, Gagneux S. 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4: e7815.
    Pubmed PMC
  24. Jolley KA, Maiden MC. 2013. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: neisseria meningitidis as an exemplar. Euro Surveill. 18: 20379.
    Pubmed PMC
  25. Jordan K, McAuliffe O. 2018. Chapter Seven - Listeria monocytogenes in foods. Adv. Food. Nutr. Res. 86: 181-213.
    Pubmed
  26. Zheng LL, Li YX, Ding J, Guo XK, Feng KY, Wang YJ, et al. 2012. A comparison of computational methods for identifying virulence factors. PLoS One 7: e42517.
    Pubmed PMC
  27. Niu C, Yu D, Wang Y, Ren H, Jin Y, Zhou W, et al. 2013. Common and pathogen-specific virulence factors are different in function and structure. Virulence 4: 473-482.
    Pubmed PMC
  28. Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production Chain. Appl. Environ. Microbiol. 82: 2433-2443.
    Pubmed PMC
  29. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. 2009. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 5: e1000605.
    Pubmed PMC
  30. Richardson EJ, Watson M. 2013. The automatic annotation of bacterial genomes. Brief. Bioinform. 14: 1-12.
    Pubmed PMC
  31. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5: 8365.
    Pubmed PMC
  32. Styles D, O’Brien P, O’Boyle S, Cunningham P, Donlon B, Jones MB. 2009. Measuring the environmental performance of IPPC industry: I. Devising a quantitative science-based and policy-weighted Environmental Emissions Index. Environ. Sci. Policy 12: 226242.
  33. Behnken S, Hertweck C. 2012. Cryptic polyketide synthase genes in non-pathogenic clostridium SPP. PLoS One 7: e29609.
    Pubmed PMC
  34. Thiel T, Pratte BS, Zhong J, Goodwin L, Copeland A, Lucas S, et al. 2013. Complete genome sequence of Anabaena variabilis ATCC 29413. Stand. Genomic. Sci. 9: 562-573.
    Pubmed PMC
  35. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sánchez B, Bidossi A, Ferrarini A, Giubellini V, et al. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc. Natl. Acad. Sci. USA 107: 19514-19519.
    Pubmed PMC
  36. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic. Acids. Symp. 41: 95-98.
  37. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
    Pubmed PMC
  38. Richter DC, Ott F, Auch AF, Schmid R, Huson DH. 2008. MetaSim—A sequencing simulator for genomics and metagenomics. PLoS One 3: e3373.
    Pubmed PMC
  39. Li B, Ju F, Cai L, Zhang T. 2015. Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach. Environ. Sci. Technol. 49: 10492-10502.
    Pubmed
  40. Tang J, Bu Y, Zhang XX, Huang K, He X, Ye L, et al. 2016. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotoxicol. Environ. Saf. 132: 260-269.
    Pubmed
  41. Fawcett T. 2006. An introduction to ROC analysis. Pattern. Recognit. Lett. 27: 861-874.
  42. Florkowski CM. 2008. Sensitivity, specificity, Receiver-Operating Characteristic (ROC) curves and likelihood ratios:communicating the performance of diagnostic tests. Clin. Biochem. Rev. 29: S83-S87.
  43. Harvey R, McBean E. 2015. A Data Mining Tool for Planning Sanitary Sewer Condition Inspection, pp. 181-199. In Hipel K, Fang L, Cullmann J, Bristow M (eds.), Conflict Resolution in Water Resources and Environmental Management, Springer, Cham.
    Pubmed PMC
  44. Youngstrom EA. 2014. A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC. J. Pediatr. Psychol. 39: 204-221.
    Pubmed PMC
  45. Ibarbalz FM, Orellana E, Figuerola ELM, Erijman L. 2016. Shotgun metagenomic profiles have a high capacity to discriminate samples of activated sludge according to wastewater type. Appl. Environ. Microbiol. 82: 5186-5196.
    Pubmed PMC
  46. Ma L, Li B, Jiang XT, Wang YL, Xia Y, Li AD, et al. 2017. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome. 5: 154.
    Pubmed PMC
  47. Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de lose Santos QM, Dick GJ, Raskin L. 2016. Metagenomic evidence for the presence of comammox nitrospira -like bacteria in a drinking water system. mSphere. 1: e00054-15.
    Pubmed PMC
  48. Ma L, Li B, Zhang T. 2014. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl. Microbiol. Biotechnol. 98: 5195-5204.
    Pubmed
  49. Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. 2015. The ocean sampling day consortium. Gigascience 4: 27.
  50. Wommack KE, Bhavsar J, Ravel J. 2008. Metagenomics: read length matters. Appl. Environ. Microbiol. 74: 1453-1463.
    Pubmed PMC
  51. Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al. 2015. Automated and accurate estimation of gene family abundance from shotgun metagenomics. PLoS Comput. Bio. 11: e1004573.
    Pubmed PMC
  52. Bibby K, Viau E, Peccia J. 2011. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol. 52: 386-392.
    Pubmed PMC
  53. Shapiro-Ilan DI, Fuxa JR, Lacey LA, Onstad DW, Kaya HK. 2005. Definitions of pathogenicity and virulence in invertebrate pathology. J. Invertebr. Pathol. 88: 1-7.
    Pubmed
  54. Yoo K., Yoo H., Lee JM, Shukla SK, Park J. 2018. Classification and regression tree approach for prediction of potential hazards of urban airborne bacteria during Asian dust events. Sci. Rep. 8: 11823.
    Pubmed PMC
  55. Aertsen W, Kint V, Van Orshoven J, Özkan K, Muys B. 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests Ecol. Model. 221: 1119-1130.
  56. Ul-Saufie AZ, Yahya AS, Ramli NA, Hamid HA. 2011. Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters. Int. J. Res. Appl. Sci. Eng. Technol. 1: 42-49.
  57. Roy K, Ambure P. 2016. The “double cross-validation” software tool for MLR QSAR model development. Chemom. Intell. Lab. Syst. 159: 108-126.
  58. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. 2002. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 70: 631-641.
    Pubmed PMC

Related articles in JMB

More Related Articles