전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Articles Service

Supplementary
Share this article on :

Related articles in JMB

More Related Articles

Research article

References

  1. Shaukat A, Virnig DJ, Salfiti NI, Howard DH, Sitaraman SV, Liff JM. 2011. Is inflammatory bowel disease an important risk factor among older persons with colorectal cancer in the United States? A population-based case-control study. Dig. Dis. Sci. 56: 2378.
    Pubmed
  2. Chang M, Chang L, Chang HM, Chang F. 2018. Intestinal and extraintestinal cancers associated with inflammatory bowel disease. Clin. Colorectal Cancer 17: e29-e37.
    Pubmed
  3. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778.
  4. Monteleone I, Vavassori P, Biancone L, Monteleone G, Pallone F. 2002. Immunoregulation in the gut: success and failures in human disease. Gut 50: iii60-iii64.
    Pubmed PMC
  5. Castro-Dopico T, Clatworthy MR. 2019. IgG and Fcγ receptors in intestinal immunity and inflammation. Front. Immunol. 10: 805.
    Pubmed PMC
  6. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204-7218.
    Pubmed PMC
  7. Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, et al. 2015. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB and NLRP3 inflammasome activation. Biochem. Pharmacol. 94: 142-154.
    Pubmed
  8. Ghosh S. 2004. Signaling to NF-κB. Genes Dev. 18: 2195-2224.
    Pubmed
  9. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, et al. 1998. Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115: 357-369.
  10. Schreiber S, Nikolaus S, Hampe J. 1998. Activation of nuclear factor κB in inflammatory bowel disease. Gut 42: 477-484.
    Pubmed PMC
  11. Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577-594.
    Pubmed
  12. Clemente JC, Manasson J, Scher JU. 2018. The role of the gut microbiome in systemic inflammatory disease. BMJ. 360: j5145.
    Pubmed PMC
  13. Wang Z-K, Yang Y-S, Chen Y, Yuan J, Sun G, Peng L-H. 2014. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J. Gastroenterol. 20: 14805-14820.
    Pubmed PMC
  14. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. 2017. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5: 10.
    Pubmed PMC
  15. Kaur R, Thakur S, Rastogi P, Kaushal N. 2018. Resolution of Cox mediated inflammation by Se supplementation in mouse experimental model of colitis. PLoS One. 13: e0201356.
    Pubmed PMC
  16. Zhou D, Pan Q, Shen F, Cao H-x, Ding W-j, Chen Y-w, et al. 2017. Total fecal microbiota transplantation alleviates high-fat dietinduced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7: 1-11.
    Pubmed PMC
  17. Camuesco D, Comalada M, Rodríguez‐Cabezas ME, Nieto A, Lorente MD, Concha A, et al. 2004. The intestinal anti‐inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br. J. Pharmacol. 143: 908-918.
    Pubmed PMC
  18. Murthy S, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. 1993. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 38: 1722-1734.
    Pubmed
  19. Viennois E, Chen F, Laroui H, Baker MT, Merlin D. 2013. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res. Notes 6: 360.
    Pubmed PMC
  20. Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 29572963.
    Pubmed PMC
  21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.
    Pubmed PMC
  22. Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998.
    Pubmed
  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7: 335-336.
    Pubmed PMC
  24. Li B, Smith EE, Lu J, Jiao Y, Huo G. 2018. Lactobacillus helveticus KLDS1.8701 alleviates D-galactose-induced aging by regulating of Nrf-2 and gut microbiota in mice. Food Funct. 9: 6586-6598.
    Pubmed
  25. Perše M, Cerar A. 2012. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012: 718617.
    Pubmed PMC
  26. Johansson ME. 2014. Mucus layers in inflammatory bowel disease. Inflamm. Bowel Dis. 20: 2124-2131.
    Pubmed
  27. Zhang Z, Shen P, Liu J, Gu C, Lu X, Li Y, et al. 2017. In vivo study of the efficacy of the essential oil of Zanthoxylum bungeanum pericarp in dextran sulfate sodium-induced murine experimental colitis. J. Agric. Food Chem. 65: 3311-3319.
    Pubmed
  28. Sun Mc, Zhang Fc, Yin X, Cheng Bj, Zhao Ch, Wang Yl, et al. 2018. Lactobacillus reuteri F‐9‐35 prevents DSS‐Induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci. 83: 2645-2652.
    Pubmed
  29. Burrello C, Garavaglia F, Cribiù FM, Ercoli G, Lopez G, Troisi J, et al. 2018. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 9: 5184.
    Pubmed PMC
  30. Tian Z, Liu J, Liao M, Li W, Zou J, Han X, et al. 2016. Beneficial effects of fecal microbiota transplantation on ulcerative colitis in mice. Dig. Dis. Sci. 61: 2262-2271.
    Pubmed
  31. Li B, Alli R, Vogel P, Geiger TL. 2014. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol. 7: 869-878.
    Pubmed PMC
  32. Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. 2015. Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review. Inflamm. Bowel Dis. 21: 1219-1228.
    Pubmed PMC
  33. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. 2015. A polyphenol-rich cranberry extract protects from dietinduced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64: 872-883.
    Pubmed
  34. Peng X, Kong B, Yu H, Diao X. 2014. Protective effect of whey protein hydrolysates against oxidative stress in D-galactose-induced ageing rats. Int. Dairy J. 34: 80-85.
  35. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919.
    Pubmed
  36. Zhu J, Mu X, Zeng J, Xu C, Liu J, Zhang M, et al. 2014. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. PLoS One. 9: e101291.
    Pubmed PMC
  37. Garside P. 1999. Cytokines in experimental colitis. Clin. Exp. Immunol. 118: 337-339.
    Pubmed PMC
  38. Wang K, Jin X, Li Q, Sawaya ACHF, Le Leu RK, Conlon MA, et al. 2018. Propolis from different geographic origins decreases intestinal inflammation and Bacteroides spp. populations in a model of DSS‐Induced colitis. Mol. Nutr. Food Res. 62: 1800080.
    Pubmed
  39. Alex P, Zachos NC, Nguyen T, Gonzales L, Chen T-E, Conklin LS, et al. 2008. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 15: 341-352.
    Pubmed PMC
  40. Boussenna A, Goncalves-Mendes N, Joubert-Zakeyh J, Pereira B, Fraisse D, Vasson M-P, et al. 2015. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats. Eur. J. Nutr. 54: 1217-1227.
    Pubmed
  41. Bischoff S, Lorentz A, Schwengberg S, Weier G, Raab R, Manns M. 1999. Mast cells are an important cellular source of tumour necrosis factor α in human intestinal tissue. Gut 44: 643-652.
    Pubmed PMC
  42. Sommer J, Engelowski E, Baran P, Garbers C, Floss DM, Scheller J. 2014. Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis. Int. J. Mol. Med. 34: 651-660.
    Pubmed PMC
  43. Vemuri R, Gundamaraju R, Shinde T, Eri R. 2017. Therapeutic interventions for gut dysbiosis and related disorders in the elderly:antibiotics, probiotics or faecal microbiota transplantation? Benef. Microbes 8: 179-192.
    Pubmed
  44. Garcia-Mantrana I, Selma-Royo M, Alcántara Baena C, Collado MC. 2018. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 9: 890.
    Pubmed PMC
  45. Sun MC, Zhang FC, Yin X, Cheng BJ, Zhao CH, Wang YL, et al. 2018. Lactobacillus reuteri F‐9‐35 prevents DSS‐Induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci. 83: 2645-2652.
    Pubmed
  46. Aderem A, Ulevitch RJ. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.
    Pubmed
  47. Lamping N, Dettmer R, Schr-Der NW, Pfeil D, Hallatschek W, Burger R, et al. 1998. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J. Clin. Invest. 101: 2065-2071.
    Pubmed PMC
  48. Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The Impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-Induced colitis. Biomed Res. Int. 2019: 3921315.
    Pubmed PMC
  49. Imhann F, Vila AV, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67: 108-119.
    Pubmed PMC
  50. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. 2014. The treatment-naive microbiome in newonset Crohn’s disease. Cell Host Microbe 15: 382-392.
    Pubmed PMC
  51. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158: 1000-1010.
    Pubmed PMC
  52. Zhang S-L, Wang S-N, Miao C-Y. 2017. Influence of microbiota on intestinal immune system in ulcerative colitis and its intervention. Front. Immunol. 8: 1674.
    Pubmed PMC
  53. Di Lorenzo F, De Castro C, Silipo A, Molinaro A. 2019. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol. Rev. 43: 257-272.
    Pubmed
  54. Forbes JD, Van Domselaar G, Bernstein CN. 2016. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7: 1081.
    Pubmed PMC
  55. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4: 293-305.
    Pubmed PMC
  56. Borody TJ, Campbell J. 2012. Fecal microbiota transplantation: techniques, applications, and issues. Gastroenterol. Clin. North Am. 41: 781-803.
    Pubmed
  57. De Groot P, Frissen M, De Clercq N, Nieuwdorp M. 2017. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 8: 253-267.
    Pubmed PMC
  58. Thorburn AN, Macia L, Mackay CR. 2014. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40: 833-842.
    Pubmed
  59. Donia MS, Fischbach MA. 2015. Small molecules from the human microbiota. Science 349: 1254766.
    Pubmed PMC
  60. Canani RB, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. 2016. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 10: 742-750.
    Pubmed PMC
  61. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541-546.
    Pubmed
  62. Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM, Scott KP, et al. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8: 1323-1335.
    Pubmed PMC
  63. Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294: 1-8.
    Pubmed
  64. Vital M, Howe AC, Tiedje JM. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. MBio. 5:e00889-00814.
    Pubmed PMC
  65. Wongkuna S, Ghimire S, Kumar R, Antony L, Chankhamhaengdecha S, Janvilisri T, et al. 2019. Olsenella lakotia SW165 sp. nov., an acetate producing obligate anaerobe with a GC rich genome. BioRxiv. 670927.
  66. Granado-Serrano AB, Martín-Garí M, Sánchez V, Solans MR, Berdun R, Ludwig IA, et al. 2019. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 9: 1-13.
    Pubmed PMC
  67. Li B, Evivie SE, Lu J, Jiao Y, Wang C, Li Z, et al. 2018. Lactobacillus helveticus KLDS1. 8701 alleviates D-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food Funct. 9: 6586-6598.
    Pubmed
  68. Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, et al. 2017. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J. Endocrinol. 232: 71-83.
    Pubmed
  69. Venegas DP, Marjorie K, Landskron G, González MJ, Quera R, Dijkstra G, et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.
    Pubmed PMC
  70. Saeki Y, Ishiyama K, Ishida N, Tanaka Y, Ohdan H. 2019. Memory-like liver natural killer cells are responsible for islet destruction in secondary islet transplantation. Sci. Rep. 9: 1-14.
    Pubmed PMC
  71. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17: 662-671.
    Pubmed PMC
  72. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7: 979.
    Pubmed PMC
  73. Tedelind S, Westberg F, Kjerrulf M, Vidal A. 2007. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J. Gastroenterol. 13: 2826.
    Pubmed PMC
  74. Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. 2017. Polydatin reduces Staphylococcus aureus lipoteichoic acid‐induced injury by attenuating reactive oxygen species generation and TLR 2‐NF κB signalling. J. Cell. Mol. Med. 21: 2796-2808.
    Pubmed PMC
  75. Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, et al. 2017. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264. 7 cells and acute lung injury. Oncotarget 8: 68153.
    Pubmed PMC
  76. Makarov SS. 2000. NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6: 441-448.
  77. Tak PP, Firestein GS. 2001. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11.
    Pubmed PMC