전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review


References

  1. Phaneuf PV, Gosting D, Palsson BO, Feist AM. 2019. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res. 47: D1164-D1171.
    Pubmed PMC CrossRef
  2. Shepelin D, Hansen ASL, Lennen R, Luo H, Herrgard MJ. 2018. Selecting the best: evolutionary engineering of chemical production in microbes. Genes (Basel) 9: 249.
    Pubmed PMC CrossRef
  3. Bennett AF, Hughes BS. 2009. Microbial experimental evolution 297: R17-R25.
    Pubmed PMC CrossRef
  4. Kering KK, Zhang X, Nyaruaba R, Yu J, Wei H. 2020. Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses 12: E423.
    Pubmed PMC CrossRef
  5. Bailey LA, Hatton D, Field R, Dickson AJ. 2012. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol. Bioeng. 109: 2093-2103.
    Pubmed CrossRef
  6. Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U. 2012. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 12: 171-182.
    Pubmed CrossRef
  7. Stella RG, Wiechert J, Noack S, Frunzke J. 2019. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol. J. 14: e1800444.
    Pubmed CrossRef
  8. Zhou S, Shanmugam KT, Ingram LO. 2003. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl. Environ. Microbiol. 69: 2237-2244.
    Pubmed PMC CrossRef
  9. Zhu K, Lu L, Wei L, Wei D, Imanaka T, Hua Q. 2011. Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration. Mol. Biotechnol. 49: 56-64.
    Pubmed CrossRef
  10. Nielsen J. 2017. Systems biology of metabolism. Annu. Rev. Biochem. 86: 245-275.
    Pubmed CrossRef
  11. Ibarra RU, Edwards JS, Palsson BO. 2002. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-189.
    Pubmed CrossRef
  12. Choe D, Lee JH, Yoo M, Hwang S, Sung BH, Cho S, et al. 2019. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun. 10: 935.
    Pubmed PMC CrossRef
  13. Si T, Lian J, Zhao H. 2017. Strain Development by Whole-Cell Directed Evolution, pp. 173-200. In: Alcalde M (ed), Directed Enzyme Evolution: Advances and Applications.
    Pubmed CrossRef
  14. Conrad TM, Lewis NE, Palsson BØ. 2011. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7: 509-509.
    Pubmed PMC CrossRef
  15. Portnoy VA, Bezdan D, Zengler K. 2011. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22: 590-594.
    Pubmed CrossRef
  16. Winkler JD, Kao KC. 2014. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104: 406-411.
    Pubmed CrossRef
  17. Winkler J, Reyes LH, Kao KC. 2013. Adaptive laboratory evolution for strain engineering. Methods Mol. Biol. 985: 211-222.
    Pubmed CrossRef
  18. Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4: 457-469.
    Pubmed CrossRef
  19. Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. 2019. Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37: 817-837.
    Pubmed CrossRef
  20. Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO. 2006. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli. Biotechnol. Lett. 28: 1527-1535.
    Pubmed CrossRef
  21. Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR. 2015. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29: 180-188.
    Pubmed CrossRef
  22. Wang Y, Tian T, Zhao J, Wang J, Yan T, Xu L, et al. 2012. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol. Lett. 34: 2069-2075.
    Pubmed CrossRef
  23. Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, et al. 2013. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb. Cell Fact. 12: 57.
    Pubmed PMC CrossRef
  24. Zhou S, Yomano LP, Shanmugam KT, Ingram LO. 2005. Fermentation of 10% (w/v) sugar to D: (-)-lactate by engineered Escherichia coli B. Biotechnol. Lett. 27: 1891-1896.
    Pubmed CrossRef
  25. Kim HJ, Jeong H, Lee SJ. 2020. Short-term adaptation modulates anaerobic metabolic flux to succinate by activating ExuT, a novel D-glucose transporter in Escherichia coli. Front. Microbiol. 11: 27.
    Pubmed PMC CrossRef
  26. Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. 2013. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8: e54144.
    Pubmed PMC CrossRef
  27. Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. 2017. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 12(10). doi: 10.1002/biot.201600687.
    Pubmed CrossRef
  28. Jiang LY, Chen SG, Zhang YY, Liu JZ. 2013. Metabolic evolution of Corynebacterium glutamicum for increased production of Lornithine. BMC Biotechnol. 13: 47.
    Pubmed PMC CrossRef
  29. Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. 2015. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab. Eng. 32: 184-194.
    Pubmed CrossRef
  30. Basso TO, de Kok S, Dario M, do Espirito-Santo JC, Muller G, Schlolg PS, et al. 2011. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab. Eng. 13: 694-703.
    Pubmed CrossRef
  31. Vilela Lde F, de Araujo VP, Paredes Rde S, Bon EP, Torres FA, Neves BC, et al. 2015. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express. 5: 16.
    Pubmed PMC CrossRef
  32. Pontrelli S, Fricke RCB, Sakurai SSM, Putri SP, Fitz-Gibbon S, Chung M, et al. 2018. Directed strain evolution restructures metabolism for 1-butanol production in minimal media. Metab. Eng. 49: 153-163.
    Pubmed CrossRef
  33. Smith KM, Liao JC. 2011. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 13: 674-681.
    Pubmed CrossRef
  34. Yu S, Zhao Q, Miao X, Shi J. 2013. Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour. Technol. 147: 499-507.
    Pubmed CrossRef
  35. Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, et al. 2016. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res. 44: 2240-2254.
    Pubmed PMC CrossRef
  36. Fu W, Guethmundsson O, Paglia G, Herjolfsson G, Andresson OS, Palsson BO, et al. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97: 2395-2403.
    Pubmed PMC CrossRef
  37. Chou HH, Keasling JD. 2013. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4: 2595.
    Pubmed CrossRef
  38. Reyes LH, Gomez JM, Kao KC. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21: 26-33.
    Pubmed CrossRef
  39. Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ, Abate EA, et al. 2012. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 7: e33727.
    Pubmed PMC CrossRef
  40. Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. 2016. Novel approach of adaptive laboratory evolution: Triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv. 6: 96250-96262.
    CrossRef
  41. Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, et al. 2008. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99: 1140-1153.
    Pubmed CrossRef
  42. Luo H, Hansen ASL, Yang L, Schneider K, Kristensen M, Christensen U, et al. 2019. Coupling S-adenosylmethionine-dependent methylation to growth: design and uses. PLoS Biol. 17: e2007050.
    Pubmed PMC CrossRef
  43. Choi JW, Yim SS, Jeong KJ. 2018. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 102: 873-883.
    Pubmed CrossRef
  44. Guimaraes PM, Francois J, Parrou JL, Teixeira JA, Domingues L. 2008. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl. Environ. Microbiol. 74: 1748-1756.
    Pubmed PMC CrossRef
  45. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934.
    Pubmed CrossRef
  46. Lee SM, Jellison T, Alper HS. 2014. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels. 7: 122.
    Pubmed PMC CrossRef
  47. Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, et al. 2018. Engineering Corynebacterium glutamicum for methanoldependent growth and glutamate production. Metab. Eng. 49: 220-231.
    Pubmed CrossRef
  48. Lu L, Wei L, Zhu K, Wei D, Hua Q. 2012. Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way. Bioresour. Technol. 117: 317-324.
    Pubmed CrossRef
  49. Fong SS, Joyce AR, Palsson BO. 2005. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res. 15: 1365-1372.
    Pubmed PMC CrossRef
  50. Hua Q, Joyce AR, Palsson BO, Fong SS. 2007. Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl. Environ. Microbiol. 73: 4639-4647.
    Pubmed PMC CrossRef
  51. Lee DH, Palsson BO. 2010. Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl. Environ. Microbiol. 76: 4158-4168.
    Pubmed PMC CrossRef
  52. Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. 2019. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56: 1-16.
    Pubmed PMC CrossRef
  53. Dragosits M, Mattanovich D. 2013. Adaptive laboratory evolution - principles and applications for biotechnology. Microb. Cell Fact. 12: 64.
    Pubmed PMC CrossRef
  54. Graf M, Haas T, Muller F, Buchmann A, Harm-Bekbenbetova J, Freund A, et al. 2019. Continuous adaptive evolution of a fastgrowing Corynebacterium glutamicum strain independent of protocatechuate. Front. Microbiol. 10: 1648.
    Pubmed PMC CrossRef
  55. Hoskisson PA, Hobbs G. 2005. Continuou culture - making a comeback? Microbiology 151: 3153-3159.
    Pubmed CrossRef
  56. Jin T, Chen Y, Jarboe LR. 2016. Chapter 10 - Evolutionary methods for improving the production of biorenewable fuels and chemicals, pp. 265-290. In: Eckert CA, Trinh CT (eds), Biotechnology for Biofuel Production and Optimization. Elsevier, Amsterdam.
  57. Herbert D, Elsworth R, Telling RC. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. Gen. Microbiol. 14: 601-622.
    Pubmed CrossRef
  58. Rao VSH, Rao PRS. 2004. Global stability in chemostat models involving time delays and wall growth. Nonlinear Analysis: Real World Applications. 5: 141-158.
    CrossRef
  59. Radek A, Tenhaef N, Muller MF, Brusseler C, Wiechert W, Marienhagen J, et al. 2017. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour. Technol. 245: 1377-1385.
    Pubmed CrossRef
  60. Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. 2016. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34: 652-664.
    Pubmed CrossRef
  61. Schwentner A, Feith A, Munch E, Busche T, Ruckert C, Kalinowski J, et al. 2018. Metabolic engineering to guide evolution - creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab. Eng. 47: 31-41.
    Pubmed CrossRef
  62. Lee S-W, Oh M-K. 2015. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab. Eng. 28: 143-150.
    Pubmed CrossRef
  63. Palsson BO. 2015. Adaptive Laboratory Evolution, pp. 422-437. In: Systems Biology: Constraint-based Reconstruction and Analysis. Cambridge University Press, Cambridge.
    CrossRef
  64. Lee DH, Feist AM, Barrett CL, Palsson BO. 2011. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. PLoS One 6: e26172.
    Pubmed PMC CrossRef
  65. Pfeifer E, Gatgens C, Polen T, Frunzke J. 2017. Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci. Rep. 7: 16780.
    Pubmed PMC CrossRef
  66. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LSJNp. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8: 2180-2196.
    Pubmed PMC CrossRef
  67. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. 2013. RNA-guided gene activation by CRISPRCas9-based transcription factors. Nat. Methods 10: 973-976.
    Pubmed PMC CrossRef
  68. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576: 149-157.
    Pubmed PMC CrossRef
  69. Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V, Csörgő B, et al. 2017. Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol. 15: e2000644-e2000644.
    Pubmed PMC CrossRef
  70. Sen M, Yilmaz U, Baysal A, Akman S, Cakar ZP. 2011. In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus. Antonie van Leeuwenhoek. 99: 825-835.
    Pubmed CrossRef
  71. Sonderegger M, Sauer U. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69: 1990-1998.
    Pubmed PMC CrossRef
  72. Camps M, Naukkarinen J, Johnson BP, Loeb LA. 2003. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I 100: 9727-9732.
    Pubmed PMC CrossRef
  73. Ravikumar A, Arzumanyan GA, Obadi MKA, Javanpour AA, Liu CC. 2018. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175: 1946-1957.e1913.
    Pubmed PMC CrossRef
  74. Moore CL, Papa LJ, 3rd, Shoulders MD. 2018. A processive protein chimera introduces mutations across defined DNA regions in vivo. J. Am. Chem. Soc. 140: 11560-11564.
    Pubmed PMC CrossRef
  75. Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE. 2018. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560: 248-252.
    Pubmed CrossRef
  76. Jakočiūnas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD. 2018. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab. Eng. 48: 288-296.
    Pubmed CrossRef
  77. Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, et al. 2017. Genome-wide mapping of mutations at singlenucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35: 48-55.
    Pubmed CrossRef
  78. Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644-646.
    Pubmed CrossRef
  79. Alper H, Stephanopoulos G. 2007. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9: 258-267.
    Pubmed CrossRef
  80. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, et al. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894-898.
    Pubmed PMC CrossRef
  81. Sandberg TE, Pedersen M, LaCroix RA, Ebrahim A, Bonde M, Herrgard MJ, et al. 2014. Evolution of Escherichia coli to 42°C and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31: 2647-2662.
    Pubmed PMC CrossRef
  82. Luan G, Cai Z, Li Y, Ma Y. 2013. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production. Biotechnol. Biofuels. 6: 137.
    Pubmed PMC CrossRef
  83. Wang X, Li Q, Sun C, Cai Z, Zheng X, Guo X, et al. 2019. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microb. Cell Fact. 18: 106.
    Pubmed PMC CrossRef
  84. McBryde C, Gardner JM, de Barros Lopes M, Jiranek V. 2006. Generation of Novel Wine Yeast Strains by Adaptive Evolution. Am. J. Enol. Vitic. 57: 423.
  85. Pérez-Torrado R, Querol A, Guillamón JM. 2015. Genetic improvement of non-GMO wine yeasts: strategies, advantages and safety. Trends Food Sci. Technol. 45: 1-11.
    CrossRef
  86. Börner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. 2019. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol. Lett. 366: fny291.
    Pubmed PMC CrossRef
  87. Lusk JL, Roosen J, Bieberstein A. 2014. Consumer acceptance of new food technologies: causes and roots of controversies. Annu. Rev. Resour. Econ. 6: 381-405.
    CrossRef
  88. Høier E, Janzen T, Rattray F, Sørensen K, Børsting MW, Brockmann E, et al. 2010, pp. 166-192. The production, application and action of lactic cheese starter cultures. Technology of Cheesemaking.
    CrossRef
  89. Gonzalez R, Tronchoni J, Quirós M, Morales P. 2016. Genetic improvement and genetically modified microorganisms, pp. 71-96. In: Wine Safety, Consumer Preference, and Human Health. Springer.
    CrossRef
  90. Csutak O, Sarbu I. 2018. Chapter 6 - Genetically Modified Microorganisms: Harmful or Helpful?, pp. 143-175. In: Holban AM, Grumezescu AM (eds),  Genetically Engineered Foods. Academic Press.
    CrossRef
  91. Snow R. 1983. Genetic improvement of wine yeast, pp. 439-459. In: Yeast genetics. Springer.
    CrossRef
  92. Walker ME, Gardner JM, Vystavelova A, McBryde C, de Barros Lopes M, Jiranek VJFyr. 2003. Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequence 4: 339-347.
    CrossRef
  93. Bakalinsky AT, Snow R. 1990. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6: 367-382.
    Pubmed CrossRef
  94. Querol A, Fernandez-Espinar MT, del Olmo M, Barrio E. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86: 3-10.
    Pubmed CrossRef
  95. Denby CM, Li RA, Vu VT, Costello Z, Lin W, Chan LJG, et al. 2018. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9: 965.
    Pubmed PMC CrossRef
  96. Pardo E, Rico J, Gil JV, Orejas M. 2015. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered Saccharomyces cerevisiae wine strain. Microb. Cell Fact. 14: 136.
    Pubmed PMC CrossRef
  97. Petzold CJ, Chan LJ, Nhan M, Adams PD. 2015. Analytics for metabolic engineering. Front. Bioeng. Biotechnol. 3: 135.
    Pubmed PMC CrossRef
  98. Bergman A, Siewers V. 2016, pp. 151-190. Metabolic engineering strategies to convert carbohydrates to aviation range hydrocarbons. Biofuels for Aviation.
    CrossRef
  99. Hansen ASL, Lennen RM, Sonnenschein N, Herrgard MJ. 2017. Systems biology solutions for biochemical production challenges. Curr. Opin. Biotechnol. 45: 85-91.
    Pubmed CrossRef
  100. Thiele I, Palsson BO. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5: 93-121.
    Pubmed PMC CrossRef
  101. Edwards JS, Palsson BO. 1999. Systems properties of the Haemophilus influenzaeRd metabolic genotype. J. Biol. Chem. 274: 17410-17416.
    Pubmed CrossRef
  102. O'Brien EJ, Monk JM, Palsson BO. 2015. Using genome-scale models to predict biological capabilities. Cell 161: 971-987.
    Pubmed PMC CrossRef
  103. Sandberg TE, Lloyd CJ, Palsson BO, Feist AM. 2017. Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl. Environ. Microbiol. 83: e00410-00417.
    Pubmed PMC CrossRef
  104. LaCroix RA, Palsson BO, Feist AM. 2017. A model for designing adaptive laboratory evolution experiments. Appl. Environ. Microbiol. 83: e03115-03116.
    Pubmed PMC CrossRef
  105. LaCroix RA, Sandberg TE, O'Brien EJ, Utrilla J, Ebrahim A, Guzman GI, et al. 2015. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81: 17-30.
    Pubmed PMC CrossRef
  106. Strucko T, Zirngibl K, Pereira F, Kafkia E, Mohamed ET, Rettel M, et al. 2018. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab. Eng. 47: 73-82.
    Pubmed CrossRef
  107. Sandberg TE, Long CP, Gonzalez JE, Feist AM, Antoniewicz MR, Palsson BO. 2016. Evolution of Escherichia coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology. PLoS One 11: e0151130.
    Pubmed PMC CrossRef
  108. Horinouchi T, Minamoto T, Suzuki S, Shimizu H, Furusawa C. 2014. Development of an automated culture system for laboratory evolution. J. Lab. Autom. 19: 478-482.
    Pubmed CrossRef
  109. Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. 2011. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat .Genet. 44: 101-105.
    Pubmed PMC CrossRef
  110. Toprak E, Veres A, Yildiz S, Pedraza JM, Chait R, Paulsson J, et al. 2013. Building a morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8: 555-567.
    Pubmed PMC CrossRef
  111. Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E. 2015. A low cost, customizable turbidostat for use in Synthetic circuit characterization. ACS Synth. Biol. 4: 32-38.
    Pubmed PMC CrossRef
  112. Heins ZJ, Mancuso CP, Kiriakov S, Wong BG, Bashor CJ, Khalil AS. 2019. Designing automated, high-throughput, continuous cell growth experiments using eVOLVER. J. Vis. Exp. 147: 10.3791/59652.
    Pubmed PMC CrossRef
  113. Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS. 2018. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36: 614-623.
    Pubmed PMC CrossRef
  114. Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15: 55-66.
    Pubmed CrossRef
  115. Kao KC, Sherlock G. 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40: 1499-1504.
    Pubmed PMC CrossRef
  116. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2:  2006.0008.
    Pubmed PMC CrossRef
  117. Domingues L, Teixeira JA, Lima N. 1999. Construction of a flocculent Saccharomyces cerevisiae fermenting lactose. Appl. Microbiol. Biotechnol. 51: 621-626.
    Pubmed CrossRef
  118. Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, et al. 2005. Metabolic engineering of a xyloseisomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5: 399-409.
    Pubmed CrossRef
  119. Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, et al. 2006. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat. Genet. 38: 1406-1412.
    Pubmed CrossRef
  120. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. 2017. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35: 904-908.
    Pubmed PMC CrossRef
  121. Lu H, Li F, Sanchez BJ, Zhu Z, Li G, Domenzain I, et al. 2019. A consensus Saccharomyces cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10: 3586.
    Pubmed PMC CrossRef
  122. Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, et al. 2017. A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnol. Biofuels 10: 169.
    Pubmed PMC CrossRef
  123. Kocabaş P, Çalık P, Çalık G, Özdamar TH. 2017. Analyses of extracellular protein production in Bacillus subtilis - II: genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem. Eng. J. 127: 229-241.
    CrossRef
  124. Lu Y, Ye C, Che J, Xu X, Shao D, Jiang C, et al. 2019. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Microb. Cell Fact. 18: 13.
    Pubmed PMC CrossRef
  125. Kumelj T, Sulheim S, Wentzel A, Almaas E. 2019. Predicting strain engineering strategies using iKS1317: A genome-scale metabolic model of Streptomyces coelicolor. Biotechnol. J. 14: e1800180.
    Pubmed CrossRef
  126. Zuniga C, Levering J, Antoniewicz MR, Guarnieri MT, Betenbaugh MJ, Zengler K. 2018. Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris. Plant Physiol. 176: 450-462.
    Pubmed PMC CrossRef
  127. Ozcan E, Selvi SS, Nikerel E, Teusink B, Toksoy Oner E, Cakir T. 2019. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Appl. Microbiol. Biotechnol. 103: 3153-3165.
    Pubmed CrossRef
  128. Kristjansdottir T, Bosma EF, Branco Dos Santos F, Ozdemir E, Herrgard MJ, Franca L, et al. 2019. A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Microb. Cell Fact. 18: 186.
    Pubmed PMC CrossRef
  129. Loira N, Mendoza S, Paz Cortes M, Rojas N, Travisany D, Genova AD, et al. 2017. Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production. BMC Syst. Biol. 11: 66.
    Pubmed PMC CrossRef
  130. Mora Salguero DA, Fernandez-Nino M, Serrano-Bermudez LM, Paez Melo DO, Winck FV, Caldana C, et al. 2018. Development of a chlamydomonas reinhardtii metabolic network dynamic model to describe distinct phenotypes occurring at different CO2 levels. PeerJ. 6: e5528.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles