전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review


References

  1. Spudich JL, Yang CS, Jung KH, Spudich EN. 2000. Retinylidene proteins: structures and functions from archaea to humans. Annu. Rev. Cell Dev. Biol. 16: 365-392.
    Pubmed
  2. Kandori H. 2004. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim. Biophys. Acta 1658: 72-79.
    Pubmed
  3. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H. 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114: 126-163.
    Pubmed PMC
  4. Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6: 488-494.
    Pubmed
  5. Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233: 149-152.
    Pubmed
  6. Oesterhelt D, Stoeckenius W. 1973. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. USA 70: 2853-2857.
    Pubmed PMC
  7. Hildebrand E, Dencher N. 1975. Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257: 46-48.
    Pubmed
  8. Schobert B, Lanyi JK. 1982. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257: 10306-10313.
  9. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296: 2395-2398.
    Pubmed
  10. Sineshchekov OA, Jung KH, Spudich JL. 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 99: 8689-8694.
    Pubmed PMC
  11. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902-1906.
    Pubmed
  12. Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, et al. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA 102: 18147-18152.
    Pubmed PMC
  13. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK. 2005. Xanthorhodopsin: a proton pump with a lightharvesting carotenoid antenna. Science 309: 2061-2064.
    Pubmed PMC
  14. Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. 2008. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ. Microbiol. 10: 1039-1056.
    Pubmed
  15. Kwon SK, Kim BK, Song JY, Kwak MJ, Lee CH, Yoon JH, et al. 2013. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol. Evol. 5: 187-199.
    Pubmed PMC
  16. Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, et al. 2014. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl. Acad. Sci. USA 111: 6732-6737.
    Pubmed PMC
  17. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, et al. 2013. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4: 1678.
    Pubmed
  18. Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, et al. 2016. A natural light-driven inward proton pump. Nat. Commun. 7: 13415.
    Pubmed PMC
  19. Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, et al. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl. Acad. Sci. USA 116: 20574-20583.
    Pubmed PMC
  20. Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, et al. 2018. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558: 595-599.
    Pubmed
  21. Kim K, Kwon SK, Jun SH, Cha JS, Kim H, Lee W, et al. 2016. Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat. Commun. 7: 12677.
    Pubmed PMC
  22. Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, et al. 2019. X-ray crystallographic structure and oligomerization of Gloeobacter rhodopsin. Sci. Rep. 9: 11283.
    Pubmed PMC
  23. Shibata M, Inoue K, Ikeda K, Konno M, Singh M, Kataoka C, et al. 2018. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8: 8262.
    Pubmed PMC
  24. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105: 16561-16565.
    Pubmed PMC
  25. Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK. 2010. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49: 9792-9799.
    Pubmed PMC
  26. Tsukamoto T, Inoue K, Kandori H, Sudo Y. 2013. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J. Biol. Chem. 288: 21581-21592.
    Pubmed PMC
  27. Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, et al. 2016. X-ray crystallographic structure of thermophilic rhodopsin: implications for high thermal stability and optogenetic function. J. Biol. Chem. 291: 12223-12232.
    Pubmed PMC
  28. Tian B, Hua Y. 2010. Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol. 18: 512-520.
    Pubmed
  29. Misra R, Eliash T, Sudo Y, Sheves M. 2019. Retinal-salinixanthin interactions in a thermophilic rhodopsin. J. Phys. Chem. B 123: 10-20.
    Pubmed
  30. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, et al. 2003. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res. 10: 137-145.
    Pubmed
  31. Choi AR, Shi L, Brown LS, Jung KH. 2014. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis. PLoS One 9: e110643.
    Pubmed PMC
  32. Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK. 2009. Reconstitution of Gloeobacter violaceus rhodopsin with a lightharvesting carotenoid antenna. Biochemistry 48: 10948-10955.
    Pubmed PMC
  33. Iyer ES, Gdor I, Eliash T, Sheves M, Ruhman S. 2015. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex. J. Phys. Chem. B 119: 2345-2349.
    Pubmed
  34. Jana S, Eliash T, Jung KH, Sheves M. 2017. Retinal binding to Apo-Gloeobacter rhodopsin: the role of pH and retinal-carotenoid interaction. J. Phys. Chem. B 121: 10759-10769.
    Pubmed
  35. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5: e77.
  36. Jezberova J, Jezbera J, Hahn MW. 2013. Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats. PLoS One 8: e68542.
    Pubmed PMC
  37. Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, et al. 2009. Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J.3: 726-737.
    Pubmed
  38. Keffer JL, Hahn MW, Maresca JA. 2015. Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola. J. Bacteriol. 197: 2704-2712.
    Pubmed PMC
  39. Nakamura S, Kikukawa T, Tamogami J, Kamiya M, Aizawa T, Hahn MW, et al. 2016. Photochemical characterization of actinorhodopsin and its functional existence in the natural host. Biochim. Biophys. Acta 1857: 1900-1908.
    Pubmed
  40. Dwulit-Smith JR, Hamilton JJ, Stevenson DM, He S, Oyserman BO, Moya-Flores F, et al. 2018. acI actinobacteria assemble a functional actinorhodopsin with natively synthesized retinal. Appl. Environ. Microbiol. 84: e01678-18.
    Pubmed PMC
  41. Mizuno CM, Rodriguez-Valera F, Ghai R. 2015. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics. mBio 6: e02083-14.
    Pubmed PMC
  42. Pushkarev A, Beja O. 2016. Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J. 10: 2331-2335.
    Pubmed PMC
  43. Kato Y, Inoue K, Kandori H. 2015. Kinetic analysis of H+-Na+ selectivity in a light-driven Na+-pumping rhodopsin. J. Phys. Chem. Lett. 6: 5111-5115.
    Pubmed
  44. Zhao H, Ma B, Ji L, Li L, Wang H, Chen D. 2017. Coexistence of light-driven Na+ and H+ transport in a microbial rhodopsin from Nonlabens dokdonensis. J. Photochem. Photobiol. B 172: 70-76.
    Pubmed
  45. Li H, Sineshchekov OA, da Silva GF, Spudich JL. 2015. In vitro demonstration of dual light-driven Na(+)/H(+) pumping by a microbial rhodopsin. Biophys. J. 109: 1446-1453.
    Pubmed PMC
  46. da Silva GF, Goblirsch BR, Tsai AL, Spudich JL. 2015. Cation-specific conformations in a dual-function ion-pumping microbial rhodopsin. Biochemistry 54: 3950-3959.
    Pubmed PMC
  47. Kovalev K, Polovinkin V, Gushchin I, Alekseev A, Shevchenko V, Borshchevskiy V, et al. 2019. Structure and mechanisms of sodiumpumping KR2 rhodopsin. Sci. Adv. 5: eaav2671.
    Pubmed PMC
  48. Tsunoda SP, Prigge M, Abe-Yoshizumi R, Inoue K, Kozaki Y, Ishizuka T, et al. 2017. Functional characterization of sodium-pumping rhodopsins with different pumping properties. PLoS One 12: e0179232.
    Pubmed PMC
  49. Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, et al. 2015. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 22: 390-395.
    Pubmed
  50. Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, et al. 2015. Structural basis for Na+ transport mechanism by a lightdriven Na+ pump. Nature 521: 48-53.
    Pubmed
  51. Inoue K, Konno M, Abe-Yoshizumi R, Kandori H. 2015. The role of the NDQ motif in sodium-pumping rhodopsins. Angew. Chem. Int. Ed. Engl. 54: 11536-11539.
    Pubmed PMC
  52. Abe-Yoshizumi R, Inoue K, Kato HE, Nureki O, Kandori H. 2016. Role of Asn112 in a light-driven sodium ion-pumping rhodopsin. Biochemistry 55: 5790-5797.
    Pubmed
  53. Tahara S, Takeuchi S, Abe-Yoshizumi R, Inoue K, Ohtani H, Kandori H, et al. 2015. Ultrafast photoreaction dynamics of a lightdriven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. J. Phys. Chem. Lett. 6: 4481-4486.
    Pubmed
  54. Hontani Y, Inoue K, Kloz M, Kato Y, Kandori H, Kennis JT. 2016. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 18: 24729-24736.
    Pubmed
  55. Suomivuori CM, Gamiz-Hernandez AP, Sundholm D, Kaila VRI. 2017. Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Proc. Natl. Acad. Sci. USA 114: 7043-7048.
    Pubmed PMC
  56. Nakajima Y, Tsukamoto T, Kumagai Y, Ogura Y, Hayashi T, Song J, et al. 2018. Presence of a haloarchaeal halorhodopsin-like Clpump in marine bacteria. Microbes Environ. 33: 89-97.
    Pubmed PMC
  57. Kandori H. 2015. Ion-pumping microbial rhodopsins. Front. Mol. Biosci. 2: 52.
    Pubmed PMC
  58. Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, et al. 1995. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269: 73-75.
    Pubmed
  59. Hasemi T, Kikukawa T, Kamo N, Demura M. 2016. Characterization of a Cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J. Biol. Chem. 291: 355-362.
    Pubmed PMC
  60. Inoue K, Koua FH, Kato Y, Abe-Yoshizumi R, Kandori H. 2014. Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J. Phys. Chem. B 118: 11190-11199.
    Pubmed
  61. Tsukamoto T, Yoshizawa S, Kikukawa T, Demura M, Sudo Y. 2017. Implications for the light-driven chloride ion transport mechanism of Nonlabens marinus rhodopsin 3 by its photochemical characteristics. J. Phys. Chem. B 121: 2027-2038.
    Pubmed
  62. Hosaka T, Yoshizawa S, Nakajima Y, Ohsawa N, Hato M, DeLong EF, et al. 2016. Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J. Biol. Chem. 291: 17488-17495.
    Pubmed PMC
  63. Inoue K, Nomura Y, Kandori H. 2016. Asymmetric functional conversion of eubacterial light-driven ion pumps. J. Biol. Chem. 291: 9883-9893.
    Pubmed PMC
  64. Anashkin VA, Bertsova YV, Mamedov AM, Mamedov MD, Arutyunyan AM, Baykov AA, et al. 2018. Engineering a carotenoidbinding site in Dokdonia sp. PRO95 Na+-translocating rhodopsin by a single amino acid substitution. Photosynth. Res. 136: 161-169.
    Pubmed
  65. Konno M, Kato Y, Kato HE, Inoue K, Nureki O, Kandori H. 2016. Mutant of a light-driven sodium ion pump can transport cesium ions. J. Phys. Chem. Lett. 7: 51-55.
    Pubmed
  66. Inoue K, Del Carmen Marin M, Tomida S, Nakamura R, Nakajima Y, Olivucci M, et al. 2019. Red-shifting mutation of light-driven sodium-pump rhodopsin. Nat. Commun. 10: 1993.
    Pubmed PMC
  67. Mackin KA, Roy RA, Theobald DL. 2014. An empirical test of convergent evolution in rhodopsins. Mol. Biol. Evol. 31: 85-95.
    Pubmed PMC
  68. Shalaeva DN, Galperin MY, Mulkidjanian AY. 2015. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodiumtranslocating rhodopsins. Biol. Direct. 10: 63.
    Pubmed PMC
  69. Pinhassi J, DeLong EF, Beja O, Gonzalez JM, Pedros-Alio C. 2016. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80: 929-954.
    Pubmed PMC
  70. Albers SV, Van de Vossenberg JL, Driessen AJ, Konings WN. 2001. Bioenergetics and solute uptake under extreme conditions. Extremophiles 5: 285-294.
    Pubmed
  71. Hase CC, Fedorova ND, Galperin MY, Dibrov PA. 2001. Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol. Mol. Biol. Rev. 65: 353-370..
    Pubmed PMC
  72. Riedel T, Gomez-Consarnau L, Tomasch J, Martin M, Jarek M, Gonzalez JM, et al. 2013. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 8: e57487.
    Pubmed PMC
  73. Kwon YM, Kim SY, Jung KH, Kim SJ. 2016. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 5: 212-223.
    Pubmed PMC
  74. Guerrero LD, Vikram S, Makhalanyane TP, Cowan DA. 2017. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems. Environ. Microbiol. 19: 3755-3767.
    Pubmed
  75. Hamilton JJ, Garcia SL, Brown BS, Oyserman BO, Moya-Flores F, Bertilsson S, et al. 2017. Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems 2:e00091-17.
    Pubmed PMC
  76. Wurzbacher C, Salka I, Grossart HP. 2012. Environmental actinorhodopsin expression revealed by a new in situ filtration and fixation sampler. Environ. Microbiol. Rep. 4: 491-497.
    Pubmed

Related articles in JMB

More Related Articles