전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Johnson DB, Hallberg KB. 2005. Acid mine drainage remediation options: a review. Sci. Total Environ. 338: 3-14.
    Pubmed
  2. Luptakova A, Kusnierova M. 2005. Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77: 97-102.
  3. Diez-Ercilla M, Sánchez-España J, Yusta I, Wendt-Potthoff K, Koschorreck M. 2014. Formation of biogenic sulphides in the water column of an acidic pit lake: biogeochemical controls and effects on trace metal dynamics. Biogeochemistry 121: 519-536.
  4. Johnson DB, Hallberg KB. 2005. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci. Total. Environ. 338: 81-93.
    Pubmed
  5. Rabus R, Hansen TA, Widdel F. 2013. Dissimilatory sulfate-and sulfur-reducing prokaryotes, pp. 309-404. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes, Springer, Berlin, Heidelberg.
  6. Jong T, Parry DL. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571.
    Pubmed
  7. Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B. 2010. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments: New taxa: Firmicutes (Class Clostridia, Order Clostridiales, Family Peptococcaceae). Extremophiles 14: 305-312.
    Pubmed
  8. Lee YJ, Romanek CS, Wiegel J. 2009. Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int. J. Syst. Evol. Microbiol. 59: 2743-2746.
    Pubmed
  9. Kimura S, Hallberg KB, Johnson DB. 2006. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 57-65.
    Pubmed
  10. Karnachuk OV, Mardanov AV, Avakyan MR, Kadnikov VV, Vlasova M, Beletsky AV, et al. 2015. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment. FEMS Microbiol. Lett. 362. doi: 10.1093/femsle/fnv007.
    Pubmed
  11. Widdel F, Bak F. 1992. Gram-negative mesophilic sulfate-reducing bacteria, pp. 3352-3378. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds.), The Prokaryotes, Springer, New York, NY.
  12. Kim GM, Kim DH, Kang JS, Baek H. 2014. Treatment of synthetic acid mine drainage using rice wine waste as a carbon source. Environ. Earth Sci. 71: 4603-4609.
  13. Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3: 208-218.
  14. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853.
    Pubmed PMC
  15. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406425.
  16. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
    Pubmed
  17. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, et al. 2006. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66: 194-205.
    Pubmed
  18. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975-2982.
    Pubmed PMC
  19. Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
    Pubmed PMC
  20. DIN German Institute for Standardization. 1983. German standard methods for the examination of water, waste water and sludge. Cations (group E) - determination of iron (E 1).
  21. US Environmental Protection Agency (US EPA). 2007. Method 7000B, Flame Atomic Absorption Spectrophotometry.
  22. Ayangbenro AS, Olanrewaju OS, Babalola OO. 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front. Microbiol. 9: 1986.
    Pubmed PMC
  23. Doshi SM. 2006. Bioremediation of acid mine drainage using sulfate-reducing bacteria. US Environmental Protection Agency, Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation. 65.
  24. Sanchez-Andrea I, Stams AJ, Hedrich S, Nancucheo I, Johnson DB. 2015. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles 19: 39-47.
    Pubmed
  25. Senko JM, Zhang G, McDonough JT, Bruns MA, Burgos WD. 2009. Metal reduction at low pH by a Desulfosporosinus species:implications for the biological treatment of acidic mine drainage. Geomicrobiol. J. 26: 71-82.
  26. Sani RK, Peyton BM, Brown LT. 2001. Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl. Environ. Microbiol. 67: 4765-4772.
    Pubmed PMC
  27. Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R. 2001. Acute toxicity of heavy metals to acetate‐utilizing mixed cultures of sulfate‐reducing bacteria: EC100 and EC50. Environ. Toxicol. Chem. 20: 2662-2669.
    Pubmed
  28. Cabrera G, Perez R, Gomez JM, Abalos A, Cantero D. 2006. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazard. Mater. 135: 40-46.
    Pubmed