전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Articles Service

Supplementary
Share this article on :

Related articles in JMB

More Related Articles

Research article

References

  1. Laws G, Kemp R. 2019. Probiotics and health: understanding probiotic trials. N. Z. Med. J. 132: 90-96.
  2. Nicholson JK, Lindon JC, Holmes E. 1999. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181-1189.
    Pubmed
  3. Niwa T. 1986. Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. J. Chromatogr. 379: 313-345.
  4. Schoina V, Terpou A, Angelika-Ioanna G, Koutinas A, Kanellaki M, Bosnea L. 2015. Use of Pistacia terebinthus resin as immobilization support for Lactobacillus casei cells and application in selected dairy products. J. Food Sci. Technol. 52: 5700-5708.
    Pubmed PMC
  5. Jewett MC, Hofmann G, Nielsen J. 2006. Fungal metabolite analysis in genomics and phenomics. Curr. Opin. Biotechnol. 17: 191-197.
    Pubmed
  6. Kieserling K, Vu TM, Drusch S, Schalow S. 2019. Impact of pectin-rich orange fibre on gel characteristics and sensory properties in lactic acid fermented yoghurt. Food Hydrocoll. 94: 152-163.
  7. Pradhan D, Mallappa RH, Grover S. 2020. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108: 106872.
  8. Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 9: 482-493.
  9. Lindon JC. 2007. The Handbook of Metabonomics and Metabolomics. pp.561-587. Amsterdam.
  10. Madsen K. 2011. Using metabolomics to decipher probiotic effects in patients with irritable bowel syndrome. J. Clin. Gastroenterol. 45: 389-390.
    Pubmed
  11. Hong Y, Hong KS, Park M, Ahn Y, Lee J, Huh C, et al. 2011. Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J. Clin. Gastroenterol. 45: 415-425.
    Pubmed
  12. Zhang L, Zhang X, Liu C, Li C, Li S, Li T, et al. 2013. Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J. Microbiol. Biotechnol. 29: 127-135.
    Pubmed
  13. Wang J. 2012. Tenchnological properties of Lactobacillus plantarum K25. J. Food Sci. Biotechnol. 5: 518-524.
  14. Zhao YL. 2012. Acuteoral toxicity and bacterial translocation evaluation of Lactobacillus plantarum K25. Dairy Ind. China 5: 9-12.
  15. Jiang Y, Zhang J, Zhao X, Zhao W, Yu Z, Chen C, et al. 2018. Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain. Biosci. Biotechnol. Biochem. 82: 1225-1233.
    Pubmed
  16. Gonzalez-Gonzalez C, Gibson T, Jauregi P. 2013. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int. J. Food Microbiol. 167: 131-137.
    Pubmed
  17. Nejati F, Rizzello CG, Di CR, Sheikh-Zeinoddin M, Diviccaro A, Minervini F, et al. 2013. Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and gamma-amino butyric acid (GABA). LWT-Food Sci. Technol. 51: 183-189.
  18. Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, et al. 2013. The comparative assessment of ACEinhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int. Dairy J. 29: 82-87.
  19. Meira SMM, Daroit DJ, Helfer VE, Correa APF, Segalin J, Carro S, et al. 2012. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res. Int. 48: 322-329.
  20. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M, et al. 2003. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57: 490-495.
    Pubmed
  21. Taubert D, Roesen R, Schoemig E. 2007. Effect of cocoa and tea intake on blood pressure-A meta-analysis. Arch. Int. Med. 167: 626634.
    Pubmed
  22. Bujalance C, Jiménez-Valera M, Moreno E, Ruiz-Bravo A. 2006. A selective differential medium for Lactobacillus plantarum. J. Microbiol. Meth. 66: 572-575.
    Pubmed
  23. Settachaimongkon S, Nout MJR, Fernandes ECA, Hettinga KA, Vervoort JM, Zwietering MH, et al. 2014. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 177: 29-36.
    Pubmed
  24. Leksrisompong P, Barbano DM, Foegeding AE, Gerard P, Drake M. 2010. The roles of fat and pH on the detection thresholds and partition coefficients of three compounds: diacetyl, delta-decalactone and furaneol. J. Sens. Stud. 25: 347-370.
  25. Rutella GS, Tagliazucchi D, Solieri L. 2016. Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: New insights for developing a bi-functional dairy food. Food Microbiol. 60: 54-61.
    Pubmed
  26. Ronca-Testoni S. 1983. Direct spectrophotometric assay for angiotensin-converting enzyme in serum. Clin. Chem. 29: 1093-1096.
    Pubmed
  27. Gao X, Pujos-Guillot E, Sebedio J. 2010. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on Trimethylsilylationd derivatization and GC/MS analysis. Anal. Chem. 82: 6447-6456.
    Pubmed
  28. Settachaimongkon S, Winata V, Wang X, Nout MJR, Zwietering MH, Smid EJ. 2015. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiol. 49: 104-115.
    Pubmed
  29. Hefa C. 2010. Volatile flavor compounds in yogurt: a review. Crit. Rev. Food Sci. 50: 938-950.
    Pubmed
  30. Hugenholtz, J. 1993. Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12: 165-178.
  31. Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. 2010. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11: 23-29.
    Pubmed PMC
  32. Murgia A, Scano P, Cacciabue R, Dessì D, Caboni P. 2019. GC-MS metabolomics comparison of yoghurts from sheep's and goats'milk. Int. Dairy J. 96: 44-49.
  33. Zareba D, Ziarno M, Scibisz I, Gawron J. 2014. The importance of volatile compound profile in the assessment of fermentation conducted by Lactobacillus casei DN-114 001. Int. Dairy J. 35: 11-14.
  34. Nomura M, Kimoto H, Someya Y, Furukawa S, Suzuki I. 1998. Production of gamma-aminobutyric acid by cheese starters during cheese ripening. J. Dairy Sci. 81: 1486-1491.
  35. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73: 7283-7290.
    Pubmed PMC
  36. Li H, Cao Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107-1116.
    Pubmed
  37. Owens DF, Kriegstein AR. 2002. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 3: 715-727.
    Pubmed
  38. Barrett E. 2014. This article corrects: gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 116: 1384-1386.
  39. Whitley K, Marshall VM. 1999. Heterofermentative metabolism of glucose and ribose and utilisation of citrate by the smooth biotype of Lactobacillus amylovorus NCFB 2745. Antonie Van Leeuwenhoek. 75: 217-223.
    Pubmed
  40. Namgung HJ, Park HJ, Cho IH, Choi HK, Kwon DY, Shim SM, et al. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agr. 90: 1926-1935.
    Pubmed
  41. Lee DE, Lee S, Jang ES, Shin HW, Moon BS, Lee CH. 2016. Metabolomic profiles of Aspergillus oryzae and Bacillus amyloliquefaciens during rice koji fermentation. Molecules 21: 21-39.
    Pubmed PMC
  42. Handa SS. 1986. Natural products and plants as liver protecting drugs. Fitoterapia 78: 351-355
  43. Wu J, Wu Q, Zhang J, Zhang W. 2015. New studies and progress of biological function of L-malate. Food Ind. 23: 225-228.
  44. Duan YF, Wang Y, Zhang JS, Song YX, Wang J. 2018. Dietary effects of succinic acid on the growth, digestive enzymes, immune response and resistance to ammonia stress of Litopenaeus vannamei. Fish Shellfish Immun. 78: 10-17.
    Pubmed
  45. Settachaimongkon S, van Valenberg HJF, Gazi I, Nout MJR, van Hooijdonk TCM, Zwietering MH, et al. 2016. Influence of Lactobacillus plantarum WCFS1 on post-acidification, metabolite formation and survival of starter bacteria in set-yoghurt. Food Microbiol. 59: 14-22.
    Pubmed
  46. Maity P, Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. 2009. The Use of Neem for Controlling Gastric Hyperacidity and Ulcer. Phytother. Res. 23: 747-755.
    Pubmed
  47. Effenberger-Neidnicht K, Jaegers J, Verhaegh R, de Groot H. 2014. Glycine selectively reduces intestinal injury during endotoxemia. J. Surg. Res. 192: 592-598.
    Pubmed
  48. Cieslik KA, Sekhar RV, Granillo A, Reddy A, Medrano G, Heredia CP, et al. 2018. Improved cardiovascular function in old mice after N-acetyl cysteine and glycine supplemented diet: inflammation and mitochondrial factors. J. Gerontol. A-Biol. 73: 1167-1177.
    Pubmed PMC
  49. Cioffi CL, Guzzo PR. 2016. Inhibitors of Glycine Transporter-1: Potential Therapeutics for the Treatment of CNS Disorders. Curr. Top. Med. Chem. 16: 3404-3437.
    Pubmed
  50. Ospina-Rojas IC, Murakami AE, Oliveira CAL, Guerra AFQG. 2013. Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. Poultry Sci. 92: 2724-2731.
    Pubmed
  51. Mansouri-Torshizi H, Zareian-Jahromi S, Abdi K, Saeidifar M. 2019. Nonionic but water soluble, [Glycine-Pd-Alanine] and [Glycine-Pd-Valine] complexes. Their synthesis, characterization, antitumor activities and rich DNA/HSA interaction studies. J. Biomol. Struct. Dyn. 37: 3566-3582.
    Pubmed
  52. Nesovic-Ostojic J, Kovacevic S, Spasic S, Lopicic S, Todorovic J, Dincic M, et al. 2019. Modulation of luminal L-alanine transport in proximal tubular cells of frog kidney induced by low micromolar Cd2+ concentration. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 216: 38-42.
    Pubmed
  53. Fan Y, Yan G, Liu F, Rong J, Ma W, Yang D, Yu Y. 2019. Potential role of poly (ADP-ribose) polymerase in delayed cerebral vasospasm following subarachnoid hemorrhage in rats. Exp. Ther. Med. 17, 1290-1299.
  54. Ślepokura K, Lis T. 2010. Dihydroxyacetone phosphate, DHAP, in the crystalline state: monomeric and dimeric forms. Carbohydr. Res. 345: 512-529.
    Pubmed
  55. Moreno-Montoro M, Olalla-Herrera M, Angel Rufian-Henares J, Gimenez Martinez R, Miralles B, Bergillos T, et al. 2017. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: activity and physicochemical property relationship of the peptide components. Food Funct. 8: 2783-2791.
    Pubmed
  56. Gonzalez-Gonzalez CR, Tuohy KM, Jauregi P. 2011. Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: effects of calcium, pH and peptides on the ACE-inhibitory activity. Int. Dairy J. 21: 615-622.
  57. Amorim FG, Coitinho LB, Dias AT, Friques AGF, Monteiro BL, Rezende LCDD, et al. 2019. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chem. 282: 109-119.
    Pubmed
  58. Abdel-Hamid M, Romeih E, Gamba RR, Nagai E, Suzuki T, Koyanagi T, et al. 2019. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. Int. Dairy J. 91: 1-8.
  59. Yeo S, Liong M. 2010. Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. Int. J. Food Sci. Nutr. 61: 161-181.
    Pubmed
  60. Donkor OHAV. 2007. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of viability and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le. Lait. 87: 21-38.
  61. Nejati F, Rizzello CG, Di CR, Sheikh-Zeinoddin M, Diviccaro A, Minervini F, et al. 2013. Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and gamma-amino butyric acid (GABA). LWT-Food Sci. Technol. 51: 183-189.
  62. Hagi T, Kobayashi M, Nomura M. 2016. Metabolome analysis of milk fermented by γ-aminobutyric acid-producing Lactococcus lactis. J. Dairy Sci. 99: 994-1001.
    Pubmed