전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Gregory JA, David MF 2017. Current understanding of iron homeosisi. Am. J. Clin. Nutr. 106: 1559S-1566S.
    Pubmed PMC
  2. Simon CA, Andrea KR, Franciso RQ. 2003. Bacterial Iron Homeostasisc. FEMS Microbiol. Rev. 27: 215-237.
  3. Arora NK, Verma M. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3Biotech 7: 381.
    Pubmed PMC
  4. Ringo S, Marlene KA, Katarzyna S, Oliver W, Drik T. 2018. Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. Res. Microbiol. 169: 598-607.
    Pubmed
  5. Albelda BM, Monachon M, Joseph E. 2019. Siderophores: from natural rolesto potential applications. Adv. Appl. Microbiol. 106: 193225.
  6. De Serrano LO, Camper AK, Richards AM. 2016. An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 29: 551-571.
    Pubmed
  7. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. 2016. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22: 1077-1090.
    Pubmed PMC
  8. Levent hal GE, Ackermann M, Schiessl KT. 2019. Why microbes secrete molecules to modify their environment: the case of ironchelating siderophores. J. R. Soc. Interface 16: 1-13.
    Pubmed PMC
  9. Shi JL, Li YQ, Hu KM, Ren JG, Liu HM. 2015. Isolation and identification of pathogens from rotted root of Pinellia ternata in Guizhou province. Microbiol. China 42: 289-299.
  10. Ahmed E, Holmstrom SJM. 2014. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7: 196-208.
    Pubmed PMC
  11. Qi B, Han M. 2018. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175: 571-582.
    Pubmed
  12. Sheng MM, Jia HK, Tao XM, Zeng LN, Zhang TT, Hu Z Q, et al. 2018. Mining, isolation and identification of siderophore synthesis gene from Brevibacillus brevis GZDF3. Am. J. Biochem. Biotechnol. 14: 200-209.
  13. Bendale MS, Chaudhari BL, Chincholkar SB. 2009. Influence of environmental factors on siderophore production by Streptomyces fulvissimus ATCC 27431. Curr. Trends Biotechnol. Pharm. 3: 362-371.
  14. Santos S, Neto IF, Machado MD, Soares HMVM, Soares EV. 2014. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions. Appl. Biochem. Biotechnol. 172: 549-560.
    Pubmed
  15. Yu S, Teng C, Bai X, Liang JS, Song T, Dong LY, et al. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of PB from soil. J. Microbiol. Biotechnol. 27: 1500-1512.
    Pubmed
  16. Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB. 2005. Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Ind. J. Biotechnol. 4: 484-490.
  17. Yu SM, Teng CY, Bai X, Liang JS, Song T, Dong LY, et al. 2017. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. J. Microbiol. 55: 877-884.
    Pubmed
  18. Waldron KJ, Tottey S, Yanagisawa S, Dennison C, Robinson NJ. 2007. A periplasmic iron-binding protein contributes toward inward copper supply. J. Biol. Chem. 282: 3837-3846.
    Pubmed
  19. Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E. 2009. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol. Biochem. 41: 154-162.
  20. Khalid AH, Jin HJ. 2019. Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere. J. Microbiol. Biotechnol. 29: 105-113.
    Pubmed
  21. Gaonkar T, Bhosle S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93: 1835-1843.
    Pubmed
  22. Naik MM, Dubey SK. 2011. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr. Microbiol. 62: 409-414.
    Pubmed
  23. Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 69: 71-92.
    Pubmed PMC
  24. Lv QZ, Yan L, Jiang YY. 2016. The synthesis, regulation, and functions of sterols in Candida albicans: well-known but still lots to learn. Virulence 7: 649-659.
    Pubmed PMC
  25. Jakub S, Jakub M, Przemysław B, Anna K. 2019. A Crucial role for ergosterol in plasma membrane composition, localisation, and activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms 7: 378.
    Pubmed PMC
  26. Yasmin S, Alcazar FL, Gründlinger M, Puempel T, Cairns T, Blatzer M, 2012. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc. Natl. Acad. Sci. USA 109: 497-504.
    Pubmed PMC
  27. Savage KA, Parquet MC, Allan DS, Davidson RJ, Holbein BE, Lilly EA,.2018. Iron restriction to clinical isolates of Candida albicans by the novel chelator DIBI inhibits growth and increases sensitivity to azoles in vitro and in vivo in a murine model of experimental vaginitis. Antimicrob. Agents Chemother. 62: e02576-17.
    Pubmed PMC
  28. Schwyn, B. and Neilands, JB. 1987. Universal chemical assay for the detection and determination of siderophore. Anal. Biochem. 160:47-56.
  29. Li YY, Jiang W, Gao RJ, Cai YJ, Guan ZB, Liao XR. 2018. Fe(III)-based immobilized metal-affinity chromatography (IMAC) method for the separation of the catechol siderophore from Bacillus tequilensis CD36. 3 Biotech. 8: 31-36.
    Pubmed PMC
  30. Ierusalimskii ND, Konova IV, Neronova NM. 1956. Determination of vitamins and antibiotics by diffusion in agar. I. Simplified computations for the cup method. Mikrobiologiia 28: 433-443.
  31. Díaz VM, Villa P, Frías A. 2002. Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Rev. Latinoam Microbiol. 44: 112-117.
  32. Scher Fran M, Baker Ralph. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. J. Phytopathol. 72: 1567-1573.
  33. Manninen Merja, Mattila-Sandholm Tiina. 1994. Methods for the detection of Pseudomonas siderophores. J. Microbiol. Method 19:223-234.
  34. Le VH, Olivera C, Spagnuolo J, Davies IG, Rakonjac J. 2020. In vitro synergy between sodium deoxycholate and furazolidone against enterobacteria. BMC Microbiol. 20(1): 5.
    Pubmed PMC
  35. Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB . 2004. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl. Biochem. Biotechnol. 118: 243-251.
  36. Sayyed RZ, and Chincholkar SB. 2009. Siderophore producing Alcaligenes feacalis: more biocontrol potential visavis chemical fungicide. Curr. Microbiol. 58: 47-51.
    Pubmed
  37. Sayyed RZ, Chincholkar SB. 2010. Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions. Indian J. Microbiol. 50: 179-182.
    Pubmed PMC
  38. Shaikh SS, Wani SJ, Sayyed RZ. 2016. Statistical-based optimization and scale-up of siderophore production process on laboratory bioreactor. 3 Biotech. 6(1): 69.
    Pubmed PMC
  39. Duffy BK, Défago G. 2000. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 66: 3142-3150.
    Pubmed PMC
  40. Bultreys A, Gheysen L. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG2352. Appl. Environ. Microbiol. 66: 325-331.
    Pubmed PMC
  41. Johnstone TC, Nolan EM. 2015. Beyond iron: non-classical biological functions of bacterial Siderophores. Dalton Trans. 44: 63206339.
    Pubmed PMC
  42. Wang Z, Schenkeveld WD, Kraemer SM, Giammar DE. 2015. Synergistic effect of reductive and ligand-promoted dissolution of goethite. Environ. Sci. Technol. 49: 7236-7244.
    Pubmed
  43. Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, et al. 2014. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J. Basic Microbiol. 54: 588-597.
    Pubmed
  44. Bing Li, Qing Li, Zhihui Xu , Nan Zhang, Qirong Shen, Ruifu Zhang . 2014. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol. 5: 636.
  45. Saha, M, Sarkar S, Sarkar B,Sharma BK, Bhattacharjee S, Tribedi P. 2016. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. Int. 23: 3984-3999.
    Pubmed
  46. Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, et al. 2014. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. Pathogens. PLoS One 9: e110038.
    Pubmed PMC
  47. Yang X, Yousef AE. 2018. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J. Microbiol. Biotechnol. 34(4): 57.
    Pubmed
  48. Che JM, Liu B, Chen Z, Shi H, Liu GD, Ge CB. 2015. Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX. Microbiol. Res. 172: 48-56.
    Pubmed

Related articles in JMB

More Related Articles