전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Kloepper JW, Leong J, Teintze M, Schroth MN. 1980. Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886.
    CrossRef
  2. Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.
    Pubmed CrossRef
  3. Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339.
    CrossRef
  4. Velkov T, Thompson PE, Nation RL, Li J. 2010. Structure - activity relationships of polymyxin antibiotics. J. Med. Chem. 53: 18981916.
    Pubmed PMC CrossRef
  5. Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS, et al. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77: 1548-1555.
    Pubmed PMC CrossRef
  6. Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, et al. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. Appl. Microbiol. 103: 2331-2339.
    Pubmed CrossRef
  7. Wang J, Liu J, Chen H, Yao J. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76: 889-894.
    Pubmed CrossRef
  8. Romero D, Perez-Garcia A, Rivera ME, Cazorla FM, de Vicente A. 2004. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl. Microbiol. Biotechnol. 64: 263-269.
    Pubmed CrossRef
  9. Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, et al. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61: 1786-1801.
    Pubmed CrossRef
  10. Perez-Garcia A, Romero D, de Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193.
    Pubmed CrossRef
  11. Wang LT, Lee FL, Tai CJ, Kuo HP. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675.
    Pubmed CrossRef
  12. Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2015. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int. J. Syst. Evol. Microbiol. 65: 2104-2109.
    Pubmed CrossRef
  13. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. 2010. Bacillus methylotrophicus sp. nov, a methanol-utilizing, plant-growthpromoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 2490-2495.
    Pubmed CrossRef
  14. Chowdhury SP, Dietel K, Rändler M, Schmid M, Junge H, Borriss R. 2013. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8: e68818.
    Pubmed PMC CrossRef
  15. Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42- a review. Front. Microbiol. 6: 780.
    Pubmed PMC CrossRef
  16. Rong LP, Lei JJ, Wang C. 2011. Collection and evaluation of the genus Lilium resources in Northeast China. Genet. Resour. Crop Evol. 58: 115-123.
    CrossRef
  17. Chau CF, Wu SH. 2006. The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci. Technol. 17: 313-323.
    CrossRef
  18. You X, Xie C, Liu K, Gu Z. 2010. Isolation of non-starch polysaccharides from bulb of tiger lily (Lilium lancifolium Thunb) with fermentation of Saccharomyces cerevisiae. Carbohydr. Polym. 81: 35-40.
    CrossRef
  19. Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106: 996-1004.
    CrossRef
  20. Tan RX, Zou WX. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459.
    Pubmed CrossRef
  21. Strobel GA, Sears J, Kramer R, Sidhu RS, Hess WM. 1996. Taxol from Pestalotiopsis microspora an endophytic fungus of Taxus wallachiana. Microbiology 142: 435-440.
    Pubmed CrossRef
  22. Vincent JM, Humphrey B. 1970. Taxonomically significant group antigens in Rhizobium. J. Gen. Microbiol. 63: 379-382.
    Pubmed CrossRef
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
    Pubmed PMC CrossRef
  24. Khamna S, Yokota A, Lumyong S. 2009. Actinomycetes isolated from medicinal plant rhizospheric soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 25: 649-655.
    CrossRef
  25. Lee S, Oh DG, Lee S, Kim G, Lee J, Son Y, et al. 2015. Chemotaxonomic metabolite profiling of 62 indigenous plant species and its correlation with bioactivities. Molecules 20: 19719-19734.
    Pubmed PMC CrossRef
  26. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. 2016. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34: 828-837.
    Pubmed PMC CrossRef
  27. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30: 918-920.
    Pubmed PMC CrossRef
  28. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, et al. 2005. Cadmium-tolerant plant growthpromoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil. Biol. Biochem. 37: 241-250.
    CrossRef
  29. Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, et al. 2014. The effect of long-term cd and ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int. J. Phytorem. 16: 643-659.
    Pubmed CrossRef
  30. Cunningham JE, Kuiack C. 1992. Production of citric and oxalic acids and solubilization of calcium-phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 58: 1451-1458.
    Pubmed PMC CrossRef
  31. Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant. Physiol. 26: 192-195.
    Pubmed PMC CrossRef
  32. Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 4756.
    Pubmed CrossRef
  33. Doebereiner J. 1994. Isolation and identification of aerobic nitrogen fixing bacteria, pp. 134-141. In: Alef K, Nannipieri P (eds), Methods in Applied Soil Microbiology and Biochemistry. Academic, Cambridge, MA, USA.
  34. Bashan Y, Holguin G, Lifshitz R. 1993. Isolation and characterization of plant growth-promoting rhizobacteria, pp. 331-345. In: Glick BR, Thompson JE (eds), Methods in Plant Molecular Biology and Biotechnology. CRC Press, BocaRaton, FL, USA.
  35. Mehta S, Nautiyal CS. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43: 5156.
    Pubmed CrossRef
  36. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.
    Pubmed CrossRef
  37. Rabbee MF, Ali MD, Choi J, Hwang BS, Jeong SC, Baek KH. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24: 1046.
    Pubmed PMC CrossRef
  38. Yao A, Dr HB, Karimov S, Boturov U, Sanginboy S, Sharipov AK. 2006. Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopathol. Plant. Protect. 39: 323-328.
    CrossRef
  39. Cai XC, Liua CH, Wang BT, Xuea YR. 2016. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol. Res. 196: 89-94.
    Pubmed CrossRef
  40. Zhang Y, Gao X, Wang S, Zhu C, Li R, Shen Q. 2018. Application of Bacillus velezensis NJAU-Z9 enhanced plant growth associated with efficient rhizospheric colonization monitored by qpcr with primers designed from the whole genome sequence. Curr. Microbiol. 75: 1574-1583.
    Pubmed PMC CrossRef
  41. Horst RK. 2013. Field manual of diseases on fruits and vegetables. Springer Science+Business Media Dordrecht.
    CrossRef
  42. Syed-Ab-Rahman SF, Carvalhais LC, Chua E, Xiao Y, Wass TJ, Schenk PM. 2018. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Front. Plant. Sci. 9: 1502.
    Pubmed PMC CrossRef
  43. Martínez-Luis S, Ballesteros J, Gutiérrez M. 2011. Antibacterial constituents from the octocoral-associated bacterium Pseudoalteromonas sp. Revista Latinoamericana Química 39: 75-83.
  44. Nishanth Kumar S, Mohandas C, Siji J, Rajasekharan K, Nambisan B. 2012. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi. J. Appl. Microbiol. 113: 914-924.
    Pubmed CrossRef
  45. Yang E, Chang H. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food. Microbiol. 139: 56-63.
    Pubmed CrossRef
  46. Wang XM, Bai YJ, Cai YJ, Zheng XH. 2017. Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process. Biochem. 53: 109-115.
    CrossRef
  47. Gill K, Kumar S, Xess I, Dey S. 2015. Novel synthetic anti-fungal tripeptide effective against Candida krusei. Ind. J. Med. Microbiol. 33: 110-116.
    Pubmed CrossRef
  48. Kloepper JW, Leong J, Teintze M, Schroth MN. 1980. Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886.
    CrossRef
  49. Rao MRK, Philip S, Kumar MH, Saranya Y, Divya D, Prabhu K. 2015. GC-MS analysis, antimicrobial, antioxidant activity of an Ayurvedic medicine, Salmali Niryasa. J. Chem. Pharma. Res. 7: 131-139.
  50. Ismail NH, Ali AM, Aimi N, Kitajima M, Takayama H, Lajis NH. 1997. Anthraquinones from Morinda elliptica. Phytochemistry 45: 1723-1725.
    CrossRef
  51. Ali AM, Ismail NH, Mackeen MM, Yazan LS, Mohamed SM, Ho ASH, et al. 2000. Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharma. Biol. 38: 298-301.
    Pubmed CrossRef
  52. Marioni J, da Silva MA, Cabreraa JL, Núñez Montoyaa SC, Paraje MG. 2016. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation. Phytomedicine 23: 1321-1328.
    Pubmed CrossRef
  53. Matoba AY. 2012. Fungal keratitis responsive to Moxifloxacin monotherapy. Cornea 31: 1206-1209.
    Pubmed PMC CrossRef
  54. Lopes R, Tsui S, Gonçalves PJRO, de Queirozm MV. 2018. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World. J. Microbiol. Biotechnol. 34: 94.
    Pubmed CrossRef
  55. de Werra P, Péchy-Tarr M, Keel C, Maurhofer M. 2009. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75: 4162-4174.
    Pubmed PMC CrossRef
  56. Todorovic B, Glick BR. 2008. The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta 229: 193-205.
    Pubmed CrossRef
  57. Abeles FB, Morgan PW, Saltveit ME Jr. 1992, pp. 1-13. Ethylene in plant biology, 2nd edn. Academic Press, San Diego.
    CrossRef
  58. Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, et al. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 147: 540-545.
    Pubmed CrossRef
  59. Meng Q, Jiang H, Hao JJ. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Cont. 98: 18-26.
    CrossRef
  60. Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, et al. 2014. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World. J. Microbiol. Biotechnol. 30: 835-845.
    Pubmed CrossRef
  61. Patten CL, Blakney AJC, Coulson TJD. 2013. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 39: 395-415.
    Pubmed CrossRef
  62. Idris EE, Iglesias DJ, Talon M, Borriss R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant. Microbe. Interact. 20: 619-626.
    Pubmed CrossRef
  63. Chagas Junior Af, De Oliveira AG, De Oliveira LA, Dos Santos Gr, Chagas LFB, Lopes da Silva AL, Luz Costa J. 2015. Production of indole-3-acetic acid by bacillus isolated from different soils. Bulg. J. Agric. Sci. 21: 282-287.
  64. Raza W, Shen Q. 2010. Growth, Fe3+ reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions. Curr. Microbiol. 61: 390-5.
    Pubmed CrossRef
  65. Kesaulya H, Hasinu JV, Tuhumury GNC. 2018. Potential of Bacillus spp produces siderophores in suppressing the wilt disease of banana plants. IOP Conference Series: Earth Environ. Sci. 102(1): 012016.
    CrossRef
  66. Ferreira CMH, Vilas-Boas A, Sousa CA, Soares HMVM, Soares EV. 2019. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express 9: 78.
    Pubmed PMC CrossRef
  67. Tailor AJ, Joshi BH. 2012. Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. J. Environ. Res. Dev. 6: 688-694.
  68. Kumar VS, Menon S, Agarwal H, Gopalakrishnan D. 2017. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technol. 3: 434-439.
    CrossRef
  69. Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G. 2011. Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain mq23 isolated from Sophora alopecuroides root nodules. Braz. J. Microbiol. 42: 567-575.
    Pubmed PMC CrossRef
  70. Shen FT, Yen JH, Liao CS, Chen WC, Chao YT. 2019. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11: 1133.
    CrossRef
  71. Borriss R. 2011. "Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents," in Bacteria in Agrobiology, pp. 41-76. In: Maheshwari DK (ed), Plant Growth Responses. Springer, Heidelberg.
    CrossRef
  72. Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F. 2013. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. Bi°Control 58: 435-455.
    CrossRef
  73. Bach E, Dos Santos Seger GD, De Carvalho Fernandes G, Lisboa BB, Passaglia LMP. 2016. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl. Soil. Ecol. 99: 141-149.
    CrossRef
  74. van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A. 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. Bi°Control 63: 39-59.
    CrossRef
  75. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. 2018. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491.
    Pubmed PMC CrossRef