전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Articles Service

Supplementary
Share this article on :

Related articles in JMB

More Related Articles

Review

References

  1. Sakamoto K, Konings WN. 2003. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 89: 105-24.2.
  2. Deng Y, Liu J, Li L, Fang H, Tu J, Li B, et al. 2015. Reduction and restoration of culturability of beer-stressed and low-temperaturestressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 206: 96-101.
    Pubmed
  3. Liu JY, Deng Y, Soteyome T, Li YY, Su JY, Li L, et al. 2018. Induction and recovery of the viable but nonculturable state of hopresistance Lactobacillus brevis. Front Microbiol. 9: 6.
    Pubmed PMC
  4. Rawat S. 2015. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci. 5: 47-56
  5. Bevilacqua A, Corbo M, Sinigaglia M. 2016. The Microbiological Quality of Food: Foodborne Spoilers, pp. 247-248. 1st Ed. Antonio Bevilacqua, Maria Rosaria Corbo and Milena Sinigaglia, Foggia, Italy.
  6. Bartowsky EJ. 2009. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48: 149-156.
    Pubmed
  7. Du Toit M, Pretorius I. S. 2000. Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal-a review. S. Afr. J. Enol. Vitic. 21: 74-96
  8. Holland R, Crow V, Curry B. 2011. Lactic Acid Bacteria Pediococcus spp., pp. 149-152. In Fuquay JW (ed.), Encyclopedia of Dairy Sciences (2nd Ed.), Ed. Academic Press, San Diego
  9. Back W. 1994. Secondary contamination in the filling area. Brauwelt Int. 4: 326-328.
  10. Yimin Z, Lixian Z, Wangang Z, Pengcheng D, Jiangang H, Xin L. 2018. An overview of spoilage microorganisms in fresh beef. Food Sci. 39: 289-296.
  11. Egan AF, Shay BJ, Rogers PJ. 1989. Factors affecting the production of hydrogen sulphide by Lactobacillus sake L13 growing on vacuum-packaged beef. J. Appl. Microbiol. 67: 255-262.
  12. Pothakos V, Devlieghere F, Villani F, Bjorkroth J, Ercolini D. 2015. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 109: 66-74.
    Pubmed
  13. Dainty RH, Mackey BM. 1992. The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. Soc. Appl. Bacteriol. Symp. Ser. 21: 103s-114s.
    Pubmed
  14. Comi G, Iacumin L. 2012. Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Int. J. Food Sci. Technol. 47: 114-121
  15. Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic Staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594.
    Pubmed PMC
  16. Morgan ME. 1976. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 18: 953965.
  17. Lafarge V, Ogier JC, Girard V, Maladen V, Leveau JY, Gruss A, et al. 2004. Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 70: 5644-5650.
    Pubmed PMC
  18. Somers EB, Johnson ME, Wong AC. 2001. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J. Dairy Sci. 84: 1926-1936.
  19. Lyhs U, Korkeala H, Vandamme P, Bjorkroth J. 2001. Lactobacillus alimentarius: a specific spoilage organism in marinated herring. Int. J. Food Microbiol. 64: 355-360.
  20. Entani E, Masai H, Suzuki KI. 1986. Lactobacillus acetotolerans, a new species from fermented vinegar broth. Int. J. Syst. Bacteriol. 36:544-549.
  21. Geissler AJ, Behr J, von Kamp K, Vogel RF. 2016. Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int. J. Food Microbiol. 216: 60-68.
    Pubmed
  22. Bartowsky EJ, Henschke PA. 2004. The 'buttery' attribute of wine--diacetyl--desirability, spoilage and beyond. Int. J. Food Microbiol. 96: 235-252.
    Pubmed
  23. Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ. 2002. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12: 151-161.
  24. Bartowsky EJ. 2009. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48: 149-156.
    Pubmed
  25. Barbieri F, Montanari C, Gardini F, Tabanelli G. 2019. Biogenic amine production by lactic acid bacteria: a review. Foods 8: 17.
    Pubmed PMC
  26. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313-323.
    Pubmed
  27. Nowakowska J, Oliver JD. 2013. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol. Ecol. 84: 213-222.
    Pubmed
  28. Dwidjosiswojo Z, Richard J, Moritz MM, Dopp E, Flemming HC, Wingender J. 2011. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. Int. J. Hyg. Environ. Health 214:485-492.
    Pubmed
  29. Zhang SH, Ye CS, Lin HR, Lv L, Yu X. 2015. UV disinfection induces a Vbnc state in Escherichia coli and Pseudomonas aeruginosa. Environ. Sci. Technol. 49: 1721-1728.
    Pubmed
  30. Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, et al. 2017. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb. Pathog. 110: 257-261.
    Pubmed
  31. Suzuki K, Iijima K, Asano S, Kuriyama H, Kitagawa Y. 2006. Induction of viable but nonculturable state in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 295-301.
  32. Deng Y, Liu J, Li L, Fang H, Tu J, Li B, et al. 2015. Reduction and restoration of culturability of beer-stressed and low-temperaturestressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 206: 96-101.
    Pubmed
  33. Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, et al. 2017. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Microb. Pathog. 107: 219-224.
    Pubmed
  34. Yang D, Jun-yan L, Hui-jing F, Jiang C, Hui-ping L, Lin L, et al. 2014. Induction and resuscitation of VBNC state beer-spoilage lactobacilli. Mod. Food Sci. Technol. 30: 154-159.
  35. Liu JY, Deng Y, Soteyome T, Li YY, Su JY, Li L, et al. 2018. Induction and recovery of the viable but nonculturable state of hopresistance Lactobacillus brevis. Front Microbiol. 9: 6.
    Pubmed PMC
  36. Liu J, Li L, Peters BM, Li B, Chen L, Deng Y, et al. 2017. The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium. Microbiologyopen 6: e00506.
    Pubmed PMC
  37. Yildiz FH, Schoolnik GK. 1998. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180: 773-784.
    Pubmed PMC
  38. Magnusson LU, Farewell A, Nyström T. 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13: 236-242.
    Pubmed
  39. Liu JY, Li L, Peters BM, Li B, Deng Y, Xu ZB, et al. 2016. Draft genome sequence and annotation of Lactobacillus acetotolerans BMLA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 363: 5.
    Pubmed
  40. Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, et al. 2018. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep.8: 11446.
    Pubmed PMC
  41. Liu JY, Deng Y, Peters BM, Li L, Li B, Chen LQ, et al. 2016. Transcriptomic analysis on the formation of the viable putative nonculturable state of beer-spoilage Lactobacillus acetotolerans. Sci. Rep. 6: 11.
    Pubmed PMC
  42. John. DiMichele L, Lewis MJ. 1993. Rapid, species-specific detection of lactic acid bacteria from beer using the polymerase chain reaction. J. Am. Soc. Brew. Chem. 51:63-66.
  43. Suzuki K, Asano S, Iijima K, Kitamoto K. 2008. Sake and Beer Spoilage Lactic Acid Bacteria- A Review, 114: 209-223.
  44. Sakamoto K, Margolles A, van Veen HW, Konings WN. 2001. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol. 183: 5371-5375.
    Pubmed PMC
  45. Suzuki K, Iijima K, Ozaki K, Yamashita H. 2005. Study on ATP production of lactic acid bacteria in beer and development of a rapid pre-screening method for beer-spoilage bacteria. J. Inst. Brew. 114: 209-223.
  46. Jun-yan L, Lin L, Bing L, Yang D, Zhen-bo X. 2015. Application of de novo sequencing in the whole genomic study of beer-spoilage lactobacilli. Mod. Food Sci. Technol. 31: 155-162.
  47. Liu J, Li L, Peters BM, Li B, Deng Y, Xu Z, et al. 2016. Draft genome sequence and annotation of Lactobacillus acetotolerans BMLA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 363: fnw201.
    Pubmed
  48. Suzuki K, Iijima K, Ozaki K, Yamashita H. 2005. Isolation of a hop-sensitive variant of Lactobacillus lindneri and identification of genetic markers for beer spoilage ability of lactic acid bacteria. Appl. Environ. Microbiol. 71: 5089-5097.
    Pubmed PMC
  49. Iijima K, Suzuki K, Ozaki K, Yamashita H. 2006. horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC45cc. J. Appl. Microbiol. 100: 1282-1288.
    Pubmed
  50. Suzuki K, Koyanagi M, Yamashita H. 2004. Genetic characterization of non-spoilage variant isolated from beer-spoilage Lactobacillus brevis ABBC45. J. Appl. Microbiol. 96: 946-953.
    Pubmed
  51. Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. 2006. A review of hop resistance in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 173-191.
  52. Suzuki K, Ozaki K, Yamashita H. 2004. Genetic marker for differentiating beer-spoilage ability of Lactobacillus paracollinoides strains. J. Appl. Microbiol. 97: 712-718.
    Pubmed
  53. Deng Y, Liu JY, Li HP, Li L, Tu JX, Fang HJ, et al. 2014. An improved plate culture procedure for the rapid detection of beer-spoilage lactic acid bacteria. J. Inst. Brew. 120: 127-132.
  54. Fricker M, Reissbrodt R, Ehling-Schulz M. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol. 121: 27-34.
    Pubmed
  55. Reissbrodt R. 2004. New chromogenic plating media for detection and enumeration of pathogenic Listeria spp.--An overview. Int. J. Food Microbiol. 95: 1-9.
    Pubmed
  56. Iversen C, Forsythe SJ. 2007. Comparison of media for the isolation of Enterobacter sakazakii. Appl. Environ. Microbiol. 73: 48-52.
    Pubmed PMC
  57. Xu Z, Hou Y, Peters BM, Chen D, Li B, Li L, et al. 2016. Chromogenic media for MRSA diagnostics. Mol. Biol. Rep.43: 1205-1212.
    Pubmed
  58. Casey GD, Dobson AD. 2004. Potential of using real-time PCR-based detection of spoilage yeast in fruit juice--a preliminary study. Int. J. Food Microbiol. 91: 327-335.
    Pubmed
  59. Reynisson E, Lauzon HL, Magnusson H, Hreggvidsson GO, Marteinsson VT. 2008. Rapid quantitative monitoring method for the fish spoilage bacteria Pseudomonas. J. Environ. Monit. 10: 1357-1362.
    Pubmed
  60. Juvonen R, Koivula T, Haikara A. 2008. Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int. J. Food Microbiol. 125: 162-169.
    Pubmed
  61. Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, et al. 2018. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep. 8: 11446.
    Pubmed PMC
  62. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63.
    Pubmed PMC
  63. Fire A, Xu SQ. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92: 4641-4645.
    Pubmed PMC
  64. Walker GT, Little MC, Nadeau JG, Shank DD. 1992. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 89: 392-396.
    Pubmed PMC
  65. Xu G, Hu L, Zhong H, Wang H, Yusa S, Weiss TC, et al. 2012. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Sci. Rep. 2: 246.
    Pubmed PMC
  66. Yun-Zhe Z, Xian-Zhou Z, Ying-Jun L, Xiao-Yan M, Wei Z. 2016. Rapid detection of Lactobacillus acidophilus in yogurt by loopmediated isothermal amplification. J. Food Safety Qual. 7: 4581-4585.
  67. Xin L, Zhang L, Meng Z, Lin K, Zhang S, Han X, et al. 2017. Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from North China. J. Dairy Sci. 100: 7802-7811.
    Pubmed
  68. Yin H, Dong J, Yu J, Li Y, Deng Y. 2018. A novel horA genetic mediated RCA detection of beer spoilage lactobacillus. Microb. Pathog. 114: 311-314.
    Pubmed
  69. Wang L, Li Y, Chu J, Xu Z, Zhong Q. 2012. Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol. Biol. Rep. 39: 445-449.
    Pubmed
  70. Xu Z, Li L, Chu J, Peters BM, Harris ML, Li B, et al. 2012. Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res. Int. 47: 166-173.
    Pubmed PMC
  71. Qing-xin G, Bin Y, Hua Q. 2016. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the detection of MRSA δ-toxin. J. Chin. Antibiotics 44: 455-459.
  72. van Baar BL. 2000. Characterisation of bacteria by matrix-assisted laser desorption/ ionisation and electrospray mass spectrometry. FEMS Microbiol. Rev. 24: 193-219.
  73. Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B. 2010. Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J. Proteome Res. 9: 3169-3183.
    Pubmed
  74. Doan NTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Thanh BL, et al. 2012. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett. Appl. Microbiol. 55: 265-273.
    Pubmed
  75. Tanigawa K, Kawabata H, Watanabe, K. 2010. Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 76: 4055-4062.
    Pubmed PMC
  76. De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P. 2011 Bacterial species identification from MALDITOF mass spectra through data analysis and machine learning. Syst. Appl. Microbiol. 34: 20-29.
    Pubmed
  77. Bellanger AP, Gbaguidi-Haore H, Liapis E, Scherer E, Millon L. 2019. Rapid identification of Candida sp. by MALDI-TOF mass spectrometry subsequent to short-term incubation on a solid medium. APMIS 127: 217-222.
    Pubmed