전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Articles Service

Supplementary
Share this article on :

Related articles in JMB

More Related Articles

Research article

References

  1. Koo T, Yulisa A, Hwang S. 2009. Microbial community structure in full scale anaerobic mono-and co-digesters treating food waste and animal waste. Bioresour. Technol. 282: 439-446.
    CrossRef
  2. Lee J, Shin SG, Han G, Koo T, Hwang S. 2017. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: key process parameters and microbial indicators of process instability. Bioresour. Technol. 245:689-697.
    CrossRef
  3. Koo T, Shin SG, Lee J, Han G, Kim W, Cho K, et al. 2017. Identifying methanogen community structures and their correlations with performance parameters in four full-scale anaerobic sludge digesters. Bioresour. Technol. 228: 368-373.
    CrossRef
  4. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW. 2014. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr. Opin. Biotechnol. 27: 55-64.
    CrossRef
  5. Appels L, Baeyens J, Degrève J, Dewil R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. progress in energy and combustion Science 34: 755-781.
    CrossRef
  6. Yang K, Yu Y, Hwang S. 2003. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res. 37: 2467-2477.
    CrossRef
  7. Shin SG, Han G, Lim J, Lee C, Hwang S. 2010. A comprehensive microbial insight into two-stage anaerobic digestion of food wasterecycling wastewater. Water Res. 44: 4838-4849.
    CrossRef
  8. Lee J, Han G, Shin SG, Koo T, Cho K, Kim W, et al. 2016. Seasonal monitoring of bacteria and archaea in a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater: correlations between microbial community characteristics and process variables. Chem. Eng. J. 300: 291-299.
    CrossRef
  9. McInerney. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. Chemistry ID: 81101832
  10. Cho K, Shin SG, Kim W, Lee J, Lee C, Hwang S. 2017. Microbial community shifts in a farm-scale anaerobic digester treating swine waste: correlations between bacteria communities associated with hydrogenotrophic methanogens and environmental conditions. Sci. Total Environ. 601-602: 167-76.
    CrossRef
  11. Han G, Shin SG, Lee J, Shin J, Hwang S. 2017. A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semi-dry anaerobic digesters treating food wastes. Bioresour. Technol. 245: 869-875.
    CrossRef
  12. Shin SG, Koo T, Lee J, Han G, Cho K, Kim W, et al. 2016. Correlations between bacterial populations and process parameters in four full-scale anaerobic digesters treating sewage sludge. Bioresour. Technol. 214: 711-721.
    CrossRef
  13. Koo T, Lee J, Hwang S. 2019. Development of an interspecies interaction model: an experiment on Clostridium cadaveris and Clostridium sporogenes under anaerobic condition. J. Environ. Manag. 237: 247-254.
    CrossRef
  14. Kim MD, Song M, Jo M, Shin SG, Khim JH, Hwang S. 2010. Growth condition and bacterial community for maximum hydrolysis of suspended organic materials in anaerobic digestion of food waste-recycling wastewater. Appl. Microbiol. Biotechnol. 85: 1611-1618.
    CrossRef
  15. Li S-L, Whang L-M, Chao Y-C, Wang Y-H, Wang Y-F, Hsiao C-J, et al. 2010. Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone. Int. J. Hydrogen energy. 35: 61-70.
    CrossRef
  16. Garrity G. Bergey’s Manual of Systematic Bacteriology: Volume 2: The Proteobacteria, Part B: The Gammaproteobacteria: Springer Science & Business Media; 2007.
  17. Lee C, Kim J, Hwang K, Hwang S. 2009. Fermentation and growth kinetic study of Aeromonas caviae under anaerobic conditions. Appl. Microbiol. Biotechnol. 83: 767-773.
    CrossRef
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265275.
  19. Hatree E. 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48: 422-427.
    CrossRef
  20. Ahn JH, Kim J, Lim J, Hwang S. 2004. Biokinetic evaluation and modeling of continuous thiocyanate biodegradation by Klebsiella sp. Biotechnol. Progress 20: 1069-1075.
    CrossRef
  21. Lee S, Kim J, Shin SG, Hwang S. 2008. Biokinetic parameters and behavior of Aeromonas hydrophila during anaerobic growth. Biotechnol. Lett. 30: 1011-1016.
    CrossRef
  22. Cho K, Nguyen DX, Lee S, Hwang S. 2013. Use of real-time QPCR in biokinetics and modeling of two different ammonia-oxidizing bacteria growing simultaneously. J. Ind. Microbiol. Biotechnol. 40: 1015-1022.
    CrossRef
  23. Klitgord N, Segrè D. 2010. Environments that induce synthetic microbial ecosystems. PLoS Computat. Biol. 6(11): e1001002.
    CrossRef
  24. Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10: 538-550.
    CrossRef
  25. Phelan VV, Liu W-T, Pogliano K, Dorrestein PC. 2012. Microbial metabolic exchange[mdash]the chemotype-to-phenotype link. Nat. Chem. Biol. 8: 26-35.
    CrossRef
  26. Lee ASY, Song KP. 2005. LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile. Biochem. Biophys. Res. Commun. 335: 659-666.
    CrossRef