전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565-574.
    CrossRef
  2. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. 2020. Severe acute respiratory syndrome-related coronavirus: the species and its viruses a statement of the coronavirus study group. BioRxiv. 20200207: 937862.
    PMC CrossRef
  3. Sola I, Almazan F, Zuniga S, Enjuanes L. 2015. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2: 265-288.
    Pubmed PMC CrossRef
  4. Fehr AR, Perlman S. 2015. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282: 1-23.
    Pubmed PMC CrossRef
  5. Fung TS, Liu DX. 2019. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol. 73: 529-557.
    Pubmed CrossRef
  6. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679.
    Pubmed CrossRef
  7. Corman VM, Ithete NL, Richards LR, Schoeman MC, Preiser W, Drosten C, et al. 2014. Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 88: 11297-11303.
    Pubmed PMC CrossRef
  8. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2 020. A p neumonia outbreak as sociated with a n ew coronavirus of probable bat origin. Nature 259: 270-273.
  9. Ji W, Wang W, Zhao X, Zai J, Li X. 2020. Cross-species transmission of the newly identified coronavirus 2019nCoV. J. Med. Virol. 92: 433-440.
    Pubmed CrossRef
  10. Did pangolins spread the China coronavirus to people? Available from https://www.nature.com/articles/d41586-020-00364-2#ref-CR1. Accessed 28 Feb 2020.
  11. Liu P, Chen W, Chen JP. 2019. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses 11. pii: E979.
    Pubmed PMC CrossRef
  12. Graham RL, Donalds on EF, B aric RS. 2013. A d ecade a fter SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11: 836-848.
    Pubmed PMC CrossRef
  13. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. 2003. Coronavirus a s a p os sblie c aus e of s evere acute respiratory syndrome. Lancet 361: 1319-1325.
    CrossRef
  14. Yang X, Yu Y, Xu J, Shu H, Xia Ja, Liu H, et al. 2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered, retrospective, observational study. Lancet Respir. Med. pii: S2213-2600(20)30079-5.
    CrossRef
  15. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. 2020. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy doi: 10.1111/all.14238. [Epub ahead of print].
    Pubmed CrossRef
  16. Wong ACP, Li X, Lau SKP, Woo PCY. 2019. Global epidemiology of bat coronaviruses. Viruses. 11.
    Pubmed PMC CrossRef
  17. Willman M, Kobasa D, Kindrachuk J. 2019. A comparative analysis of factors influencing two outbreaks of Middle Eastern respiratory syndrome (MERS) in Saudi Arabia and South Korea. Viruses 11. pii: E1119.
    Pubmed PMC CrossRef
  18. Reusken CB, Schilp C, Raj VS, De Bruin E, Kohl RH, Farag EA, et al. 2016. MERS-CoV infection of alpaca in a region where MERS-CoV is endemic. Emerg. Infect. Dis. 22: 1129-1131.
    Pubmed PMC CrossRef
  19. WHO Novel Coronavirus (2019-nCoV) SITUATION REPORT - 1 21 JANUARY 2020. Available from https://www.who.int/docs/default-source/coronaviruse/situationreports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4.Accessed 28 Feb. 2020.
  20. WHO Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed 02 Mar. 2020.
  21. WHO Coronavirus disease 2019 (COVID-19) Situation Report – 55 (15 Mar 2020). Available from https://www.who.int/docs/default-source/coronaviruse/situationreports/20200315-sitrep-55-covid-19.pdf?sfvrsn=33daa5cb_8.Accessed 19 Mar. 2020.
  22. WHO Coronavirus disease 2019 (COVID-19) Situation Report – 26 (15 Feb 2020). Available from https://www.who.int/docs/default-source/coronaviruse/situationreports/20200215-sitrep-26-covid-19.pdf?sfvrsn=a4cc6787_2.Accessed 02 Mar 2020.
  23. KCDC COVID-19 situation reports in South Korea (24 Feb 2020) Available from https://www.cdc.go.kr/board/board.es?mid=a20501000000&bid=0015&act=view&list_no=366324&tag=&nPage=1. Accessed 28 Feb. 2020.
  24. KCDC COVID-19 situation reports in South Korea (18 Feb 2020). Available from https://www.cdc.go.kr/board/board.es?mid=a20501000000&bid=0015&act=view&list_no=366228&tag=&nPage=3. Accessed 28 Feb. 2020.
  25. KCDC COVID-19 situation reports in South Korea (01 Mar 2020). Available from https://www.cdc.go.kr/board/board.es?mid=a20501000000&bid=0015&act=view&list_no=366410&tag=&nPage=1. Accessed 02 Mar. 2020.
  26. WHO S ummary of probable S ARS c as es w ith o ns et o f illness from 1 November 2002 to 31 July 2003. Available from https://www.who.int/csr/sars/country/table2004_04_21/en/. Accessed 28 Feb. 2020.
  27. WHO Middle East respiratory syndrome coronavirus (MERS-CoV) monthly summary, November 2019. Available from https://www.who.int/emergencies/mers-cov/en/.Accessed 28 Feb. 2020.
  28. Pan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. 2020. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect. Dis. pii: S1473-3099.
    CrossRef
  29. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. 2020. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. doi: 10.1001/jama.2020.2565. [Epub ahead of print].
    Pubmed CrossRef
  30. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. 2 020. T rans miss ion of 2 019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382: 970-971.
    Pubmed CrossRef
  31. Chen Y, Chan KH, Kang Y, Chen H, Luk HK, Poon RW, et al. 2015. A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus. Emerg. Microbes Infect. 4: e26.
    Pubmed PMC CrossRef
  32. Meyer B, Drosten C, Muller MA. 2014. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res. 194: 175-183.
    Pubmed CrossRef
  33. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. 2020. A Novel Coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382: 727-733.
    Pubmed CrossRef
  34. Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. Lancet 395: 470-473.
    CrossRef
  35. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25. 25(3). doi: 10.2807/1560-7917.
    CrossRef
  36. WHO Coronavirus disease (COVID-19) technical guidance:Laboratory testing for 2019-nCoV in humans. Available from https://www.who.int/emergencies/diseases/novelcoronavirus-2019/technical-guidance/laboratory-guidance.Accessed 02 Mar. 2020.
  37. Wang Y, Wang W, Xu L, Zhou X, Shokrollahi E, Felczak K, et al. 2016. Cross talk between nucleotide synthesis pathways with cellular immunity in constraining hepatitis E virus replication. Antimicrob. Agents Chemother. 60: 2834-2848.
    Pubmed PMC CrossRef
  38. Debing Y, Emerson SU, Wang Y, Pan Q, Balzarini J, Dallmeier K, et al. 2014. Ribavirin inhibits in vitro hepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon. Antimicrob. Agents Chemother. 58: 267-273.
    Pubmed PMC CrossRef
  39. Leyssen P, Balzarini J, De Clercq E, Neyts J. 2005. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. J. Virol. 79: 1943-1947.
    Pubmed PMC CrossRef
  40. De Clercq E. 2019. New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem. Asian J. 14: 3962-3968.
    Pubmed CrossRef
  41. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30: 269-271.
    Pubmed PMC CrossRef
  42. So LK, Lau AC, Yam LY, Cheung TM, Poon E, Yung RW, et al. 2003. Development of a standard treatment protocol for severe acute respiratory syndrome. Lancet 361: 1615-1617.
    CrossRef
  43. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. 2014. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int. J. Infect. Dis. 20: 42-46.
    Pubmed CrossRef
  44. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. 2016. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15: 327-347.
    Pubmed CrossRef
  45. Choy M. 2016. Pharmaceutical approval update. P T. 41: 416-441.
  46. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralins ki LE, Cas e JB, et al. 2017. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9.
    Pubmed PMC CrossRef
  47. Mulangu S, Dodd LE, Davey RT, Jr., Tshiani Mbaya O, Proschan M, Mukadi D, et al. 2019. A Randomized, controlled trial of ebola virus disease therapeutics. N. Engl. J. Med. 381: 2293-2303.
    Pubmed CrossRef
  48. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. 2020. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 382: 929-936.
    Pubmed CrossRef
  49. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. 2013. Antimalaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 23: 300-302.
    Pubmed PMC CrossRef
  50. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. 2006. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 6: 67-69.
    CrossRef
  51. Kono M, Tatsumi K, Imai AM, Saito K, Kuriyama T, Shirasawa H. 2008. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res. 77: 150-152.
    Pubmed CrossRef
  52. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2: 69.
    Pubmed PMC CrossRef
  53. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. 2004. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 323: 264-268.
    Pubmed PMC CrossRef
  54. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis. 3: 722-727.
    CrossRef
  55. Gao J, Tian Z, Yang X. 2020. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14: 72-73.
    Pubmed CrossRef
  56. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, et al. 2004. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA 101: 10012-10017.
    Pubmed PMC CrossRef
  57. Mukherjee P, Desai P, Ross L, White EL, Avery MA. 2008. Structure-based virtual screening against SARS-3CL(pro) to identify novel non-peptidic hits. Bioorg. Med. Chem. 16: 4138-4149.
    Pubmed CrossRef
  58. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. 2004. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 59: 252-256.
    Pubmed PMC CrossRef
  59. Chan KS, Lai ST, Chu CM, Tsui E, Tam CY, Wong MM, et al. 2003. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med. J. 9: 399-406.
  60. MSIT Research projects initiation for drug repositioning study for COVID-19 treatment. Available from https://www.msit.go.kr/web/msipContents/contentsView.do?cateId=policycom2&artId=2657968. Accessed 28 Feb. 2020
  61. Zhang C, Maruggi G, Shan H, Li J. 2019. Advances in mRNA vaccines for infectious diseases. Front Immunol. 10: 594.
    Pubmed PMC CrossRef
  62. Andre F E. 2 001. T he f uture of v accines , immunisation concepts and practice. Vaccine 19: 2206-2209.
    CrossRef
  63. Pronker ES, Weenen TC, Commandeur H, Claassen EH, Osterhaus AD. 2013. Risk in vaccine research and development quantified. PLoS One 8: e57755.
    Pubmed PMC CrossRef
  64. Guarner J. 2020. Three emerging coronaviruses in two decades. Am. J. Clin. Pathol. 153: 420-421
    Pubmed CrossRef
  65. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. 2009. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7: 226-236.
    Pubmed PMC CrossRef
  66. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. 2020. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176: 104742.
    Pubmed CrossRef
  67. Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3: 237-261.
    Pubmed PMC CrossRef
  68. Sun C, Chen L, Yang J, Luo C, Zhang Y, Li J, et al. 2020. SARS-CoV-2 and SARS-CoV Spike-RBD structure and receptor binding comparison and potential implications on neutralizing antibody and vaccine development. BioRxiv. doi: 10.1101/2020.02.16.951723
    CrossRef
  69. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 324: 773-781.
    Pubmed PMC CrossRef
  70. Okba NM, Raj VS, Haagmans BL. 2017. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr. Opin. Virol. 23: 49-58.
    Pubmed CrossRef
  71. Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. 2005. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 334: 160-165.
    Pubmed CrossRef
  72. Clover Biopharmaceuticals vaccines programs. Available from http://www.cloverbiopharma.com/index.php?m=content&c=index&a=lists&catid=42. Accessed 28 Feb. 2020
  73. CEPI and GSK announce collaboration to strengthen the global effort to develop a vaccine for the 2019-nCoV virus. Available from https://www.gsk.com/en-gb/media/pressreleases/cepi-and-gsk-announce-collaboration-to-strengthenthe-global-effort-to-develop-a-vaccine-for-the-2019-ncov-virus/.Accessed 28 Feb. 2020
  74. ‘Significant step’ in COVID-19 vaccine quest Available from https://www.uq.edu.au/news/article/2020/02/significantstep%E2%80%99-covid-19-vaccine-quest. Accessed 28 Feb. 2020
  75. CEPI to fund three progrannes to develop vaccines against the novel coronavirus (nCoV-2019). Available from https://cepi.net/news_cepi/cepi-to-fund-three-programmes-to-developvaccines-against-the-novel-coronavirus-ncov-2019. Accessed 28 Feb. 2020
  76. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, et al. 2 004. A D NA v accine i nduces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561-564.
    Pubmed CrossRef
  77. Sardesai NY, Weiner DB. 2011. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 23: 421-429.
    Pubmed PMC CrossRef
  78. Inovio Accelerates Timeline for COVID-19 DNA Vaccine INO-4800. Available from http://ir.inovio.com/news-andmedia/news/press-release-details/2020/Inovio-Accelerates-Timeline-for-COVID-19-DNA-Vaccine-INO-4800/default.aspx.Accessed 03 Mar. 2020
  79. Inovio’s produc pipeline Available from https://www.inovio.com/product-pipeline. Accessed 28 Feb. 2020
  80. dMAb Technology platform Available from https://www.inovio.com/technology#dmab. Accessed 28 Feb. 2020.
  81. Pardi N, Hogan MJ, Porter FW, Weissman D. 2018. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov. 17: 261-279.
    Pubmed PMC CrossRef
  82. Moderna’s pipeline Available from https://www.modernatx.com/pipeline. Accessed 28 Feb. 2020
  83. mRNA platform: Enabling Drug Discovery & Development Available from https://www.modernatx.com/mrna-technology/mrna-platform-enabling-drug-discovery-development. Accessed 28 Feb. 2020.
  84. hyFc platform. Available from http://www.genexine.com/m21.php. Accessed 20 Feb. 2020
  85. Seo YB, Im SJ, Namkoong H, Kim SW, Choi YW, Kang MC, et al. 2014. Crucial roles of interleukin-7 in the development of T follicular helper cells and in the induction of humoral immunity. J. Virol. 88: 8998-9009.
    Pubmed PMC CrossRef
  86. Lee JH, Cho JH, Yeo J, Lee SH, Yang SH, Sung YC, et al. 2013. The pharmacology study of a new recombinant TNF receptor-hyFc fusion protein. Biologicals 41: 77-83.
    Pubmed CrossRef
  87. Loset GA, Roux KH, Zhu P, Michaelsen TE, Sandlie I. 2004. Differential segmental flexibility and reach dictate the antigen binding mode of chimeric IgD and IgM:implications for the function of the B cell receptor. J. Immunol. 172: 2925-2934.
    Pubmed CrossRef
  88. Kang MC, Park HW, Choi DH, Choi YW, Park Y, Sung YC, et al. 2017. Plasmacytoid dendritic cells contribute to the protective immunity induced by intranasal treatment with Fc-fused interleukin-7 against lethal influenza virus infection. Immune Netw. 17: 343-351.
    Pubmed PMC CrossRef
  89. Tirado SM, Yoon KJ. 2003. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 16: 69-86.
    Pubmed CrossRef
  90. Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, et al. 2018. Modulation of Dengue/Zika Virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in Zika Virus infection. Front Immunol. 9: 597.
    Pubmed PMC CrossRef
  91. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. 2020. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol. 94(5). pii: e02015-19.
    Pubmed CrossRef
  92. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, et al. 2014. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 451: 208-214.
    Pubmed PMC CrossRef
  93. Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC, et al. 2004. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J. Virol. 78: 4638-4645.
    Pubmed PMC CrossRef
  94. Duffy S. 2018. Why are RNA virus mutation rates so damn high? PLoS Biol. 16: e3000003.
    Pubmed PMC CrossRef
  95. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2 020. A p neumonia outbreak as sociated with a n ew coronavirus of probable bat origin. Nature 579: 270-273.
    Pubmed CrossRef
  96. Yeager C L, A s hmun R A, W illiams RK, C ardellichio C B, Shapiro LH, Look AT, et al. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357: 420-422.
    Pubmed CrossRef
  97. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102: 7988-7993.
    Pubmed PMC CrossRef
  98. Tresnan DB, Levis R, Holmes KV. 1996. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70: 8669-8674.
    Pubmed PMC CrossRef
  99. Delmas B, Gelfi J, L’Haridon R, Vogel LK, Sjostrom H, Noren O, et al. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 357: 417-420.
    Pubmed CrossRef
  100. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450-454.
    Pubmed CrossRef
  101. Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirusEMC. Nature 495: 251-254.
    Pubmed CrossRef
  102. Krempl C, Schultze B, Herrler G. 1995. Analysis of cellular receptors for human coronavirus OC43. Adv. Exp. Med. Biol. 380: 371-374.
    Pubmed CrossRef
  103. Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, et al. 2015. Human coronavirus HKU1 spike protein uses Oacetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J. Virol. 89: 7202-7213.
    Pubmed PMC CrossRef
  104. Williams RK, Jiang GS, Holmes KV. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 88: 5533-5536.
    Pubmed PMC CrossRef