전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Pereira PM, Vicente AF. 2013. Meat nutritional composition and nutritive role in the human diet. Meat. Sci. 93: 586-592.
    Pubmed
  2. Alcantara JMA, Sanchez-Delgado G, Martinez-Tellez B, Labayen I, Ruiz JR. 2019. Impact of cow’s milk intake on exercise performance and recovery of muscle function: a systematic review. J. Int. Soc. Sports. Nutr. 16: 22.
    Pubmed PMC
  3. Hess J, Slavin J. 2016. Defining “protein” foods. Nutr. Today 51: 117-120.
    Pubmed PMC
  4. LeBlanc JG, Matar C, Valdez JC, LeBlanc J, Perdigon G. 2002. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J. Dairy Sci. 85: 2733-2742.
  5. Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183.
    Pubmed
  6. Khalid NM, Marth EH. 1990. Proteolytic activity by strains of Lactobacillus plantarum and Lactobacillus casei. J. Dairy Sci. 73: 30683076.
  7. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21: 8787-8803.
    Pubmed PMC
  8. Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148:1258-1270.
    Pubmed PMC
  9. Lin L, Zhang J. 2017. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 18: 2.
    Pubmed PMC
  10. Bibbo S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. 2016. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 20: 4742-4749.
  11. Zhang Z, Li D, Tang R. 2019. Changes in mouse gut microbial community in response to the different types of commonly consumed meat. Microorganisms 7: 76.
    Pubmed PMC
  12. Xue Z, Zhang J, Zhang R, Huang Z, Wan Q, Zhang Z. 2019. Comparative analysis of gut bacterial communities in housefly larvae fed different diets using a high-throughput sequencing approach. FEMS Microbiol. Lett. 366: fnz126.
    Pubmed
  13. Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, et al. 2015. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 5: 15220.
    Pubmed PMC
  14. Han GG, Lee JY, Jin GD, Park J, Choi YH, Chae BJ, et al. 2017. Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl. Microbiol. Biotechnol. 101: 5903-5911.
    Pubmed
  15. Lim J-S, Yang SH, Kim B-S, Lee EY. 2018. Comparison of microbial communities in swine manure at various temperatures and storage times. Asian-australas. J. Anim. Sci. 31: 1373.
    Pubmed PMC
  16. Costa A, Lopez-Villalobos N, Sneddon NW, Shalloo L, Franzoi M, De Marchi M, et al. 2019. Invited review: Milk lactose-current status and future challenges in dairy cattle. J. Dairy Sci. 102: 5883-5898.
    Pubmed
  17. Ammar EM, Wang X, Rao CV. 2018. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci. Rep. 8: 609.
    Pubmed PMC
  18. Bodini S, Nunziangeli L, Santori F. 2007. Influence of amino acids on low-density Escherichia coli responses to nutrient downshifts. J. Bacteriol. 189: 3099-3105.
    Pubmed PMC
  19. Juers DH, Matthews BW, Huber RE. 2012. LacZ β‐galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21: 1792-1807
    Pubmed PMC
  20. Gao Z, Daliri EB, Wang J, Liu D, Chen S, Ye X, et al. 2019. Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J. Food Prot. 82: 441-453.
    Pubmed
  21. Leclerc H, Mossel D, Edberg S, Struijk C. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu. Rev. Microbiol. 55: 201-234.
    Pubmed
  22. Lindberg A-M, Ljungh Å, Ahrne S, Löfdahl S, Molin G. 1998. Enterobacteriaceae found in high numbers in fish, minced meat and pasteurised milk or cream and the presence of toxin encoding genes. Int. J. Food Microbiol. 39: 11-17.
  23. Dai Z-L, Wu G, Zhu W-Y. 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci. 16: 1768-1786.
    Pubmed
  24. Byun R, Carlier JP, Jacques NA, Marchandin H, Hunter N. 2007. Veillonella denticariosi sp. nov., isolated from human carious dentine. Int. J. Syst. Evol. Microbiol. 57: 2844-2848.
    Pubmed
  25. Sahlin K. 1986. Muscle fatigue and lactic acid accumulation. Acta Physiol. Scand. Suppl. 556: 83-91.
  26. Edman AC, Lexell J, Sjostrom M, Squire JM. 1988. Structural diversity in muscle fibres of chicken breast. Cell. Tissue Res. 251: 281289.
    Pubmed
  27. Zhao J, Zhang X, Liu H, Brown MA, Qiao S. 2019. Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci. 20: 145-154.
    Pubmed
  28. Stackebrandt E, Osawa R. 2015. Phascolarctobacterium. pp. 1-4. Bergey's Manual of Systematics of Archaea Bacteria.
  29. Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng YJE, et al. 2017. Phascolarctobacteriumáfaecium abundant colonization in human gastrointestinal tract. Exp. Ther. Med. 14: 3122-3126.
    Pubmed PMC
  30. Slobodkin A. 2014. The Family Peptostreptococcaceae, pp. 291-302. In: Rosenberg E., Delong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes, Springer, Berlin, Heidelberg
  31. Li M, Li Y, Fan X, Qin Y, He Y, Lv Y. 2019. Draft genome sequence of Rummeliibacillus sp. strain TYF005, a physiologically recalcitrant bacterium with high ethanol and salt tolerance isolated from spoilage vinegar. Microbiol. Resour. Announc. 8: e0024400219.
    Pubmed PMC
  32. Her J, Kim J. 2013. Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of South Korea. J. Microbiol. 51: 268-272.
    Pubmed
  33. Junpadit P, Suksaroj TT, Boonsawang P. 2017. Transformation of palm oil mill effluent to terpolymer polyhydroxyalkanoate and biodiesel using Rummeliibacillus pycnus strain TS 8. Waste Biomass. Valor. 8: 1247-1256.
  34. Tan HY, Chen SW, Hu SY. 2019. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 92: 265-275.
    Pubmed
  35. Shim Y, Kim J, Hosseindoust A, Ingale SL, Choi Y, Kim M J, et al. 2017. Effects of supplementation of multienzymes in diets containing different energy levels on growth performance, nutrient digestibility, blood metabolites, microbiota and intestinal morphology of broilers. Ann. Anim. Resour. Sci. 28: 97-107.
  36. Giraffa G. 2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222.
  37. Iyer R, Tomar S, Maheswari TU, Singh R. 2010. Streptococcus thermophilus strains: multifunctional lactic acid bacteria. Int. Dairy J. 20: 133-141.
  38. Siegumfeldt H, Bjorn Rechinger K, Jakobsen M. 2000. Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl. Environ. Microbiol. 66: 2330-2335.
    Pubmed PMC
  39. Rajagopal S, Sandine WJJods. 1990. Associative growth and proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in skim milk. J. Dairy Sci. 73: 894-899.
  40. Akerstedt M, Wredle E, Lam V, Johansson M. 2012. Protein degradation in bovine milk caused by Streptococcus agalactiae. J. Dairy Res. 79: 297-303.
    Pubmed
  41. Krzysciak W, Pluskwa KK, Jurczak A, Koscielniak D. 2013. The pathogenicity of the Streptococcus genus. Eur. J. Clin. Microbiol. Infect. Dis. 32: 1361-1376.
    Pubmed PMC
  42. Giard JC, Laplace JM, Rincé A, Pichereau V, Benachour A, Leboeuf C, et al. 2001. The stress proteome of Enterococcus faecalis. Electrophoresis 22: 2947-2954.
  43. Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. 2017. Links between dietary protein sources, the gut microbiota, and obesity. Front. Physiol. 8: 1047.
    Pubmed PMC
  44. Yu J, Kroll JS. 1999. DsbA: A protein-folding catalyst contributing to bacterial virulence. Microbes Infect. 1: 1221-1228.
  45. Smith EA, Macfarlane GT. 1997. Dissimilatory amino Acid metabolism in human colonic bacteria. Anaerobe 3: 327-337.
    Pubmed
  46. de Vos WM, Vaughan EE. 1994. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217-237.
    Pubmed
  47. Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. 2008. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J. Biosci. Bioeng. 106: 381-386.
    Pubmed
  48. Jefferson KK. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236: 163-173.
    Pubmed
  49. Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34: 877-886.
    Pubmed
  50. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8: 881-890.
    Pubmed PMC
  51. Bačun-Družina V, Mrvčić J, Butorac A, Gjuračić KJMčzupipm. 2009. The influence of gene transfer on the lactic acid bacteria evolution. Mljekarstvo 59: 181-192.
  52. Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701.
    Pubmed
  53. Davis BM, Waldor MK. 2002. Mobile genetic elements and bacterial pathogenesis, pp. 1040-1059. Mobile DNA II, Ed. American Society of Microbiology

Related articles in JMB

More Related Articles