Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-2: 155~162

AuthorMin-Jeong Kim, Myoung-Uoon Jang, Gyeong-Hwa Nam, Heeji Shin, Jeong-Rok Song, Tae-Jip Kim
Place of dutyDivision of Animal, Horticultural and Food Sciences, Graduate School of Chungbuk National University, Cheongju 28644, Republic of Korea
TitleFunctional Expression and Characterization of Acetyl Xylan Esterases CE Family 7 from Lactobacillus antri and Bacillus halodurans
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-2
AbstractAcetyl xylan esterase (AXE; E.C. 3.1.1.72) is one of the accessory enzymes for xylan degradation, which can remove the terminal acetate residues from xylan polymers. In this study, two genes encoding putative AXEs (LaAXE and BhAXE) were cloned from Lactobacillus antri DSM 16041 and Bacillus halodurans C-125, and constitutively expressed in Escherichia coli. They possess considerable activities towards various substrates such as p-nitrophenyl acetate, 4-methylumbelliferyl acetate, glucose pentaacetate, and 7-amino cephalosporanic acid. LaAXE and BhAXE showed the highest activities at pH 7.0 and 8.0 at 50oC, respectively. These enzymes are AXE members of carbohydrate esterase (CE) family 7 with the cephalosporine-C deacetylase activity for the production of antibiotics precursors. The simultaneous treatment of LaAXE with Thermotoga neapolitana β-xylanase showed 1.44-fold higher synergistic degradation of beechwood xylan than the single treatment of xylanase, whereas BhAXE showed no significant synergism. It was suggested that LaAXE can deacetylate beechwood xylan and enhance the successive accessibility of xylanase towards the resulting substrates. The novel LaAXE originated from a lactic acid bacterium will be utilized for the enzymatic production of D-xylose and xylooligosaccharides.
Full-Text
Key_wordAcetyl xylan esterases, carbohydrate esterase (CE) family 7, synergistic xylan degradation, Lactobacillus antri, Bacillus halodurans
References
  1. Huang YC, Chen GH, Chen YF, Chen WL, Yang CH. 2010. Heterologous expression of thermostable acetylxylan esterase gene from Thermobifida fusca and its synergistic action with xylanase for the production of xylooligosaccharides. Biochem. Biophys. Res. Commun. 400: 718-723.
    Pubmed CrossRef
  2. Zheng F, Huang J, Yin Y, Ding S. 2013. A novel neutral xylanase with high SDS resistance from Volvariella volvacea:characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. J. Ind. Microbiol. Biotechnol. 40: 1083-1093.
    Pubmed CrossRef
  3. Hettiarachchi SA, Kwon YK, Lee Y, Jo E, Eom TY, Kang YH, et al. 2019. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb. Cell Fact. 18: 122.
    Pubmed CrossRef Pubmed Central
  4. Malgas S, Mafa MS, Mkabayi L, Pletschke B. 2019. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World J. Microbiol. Biotechnol. 35(12): 187.
    Pubmed CrossRef
  5. Biely P. 2012. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol. Adv. 30: 1575-1588.
    Pubmed CrossRef
  6. Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, et al. 2018. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci. Rep. 8: 4318.
    Pubmed CrossRef Pubmed Central
  7. Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. 2016. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb. Technol. 93-94: 79-91.
    Pubmed CrossRef
  8. Sista Kameshwar AK, Qin W. 2018. Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylan esterases. Mycology 9: 273-295.
    CrossRef
  9. Mitsushima K, Takimoto A, Sonoyama T, Yagi S. 1995. Gene cloning, nucleotide sequence, and expression of a cephalosporinC deacetylase from Bacillus subtilis. Appl. Environ. Microbiol. 61: 2224-2229.
    Pubmed CrossRef Pubmed Central
  10. Degrassi G, Kojic M, Ljubijankic G, Venturi V. 2000. The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity. Microbiology 146: 1585-1591.
    Pubmed CrossRef
  11. Levisson M, Han GW, Deller MC, Xu Q, Biely P, Hendriks S, et al. 2012. Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins 80: 1545-1559.
    Pubmed CrossRef Pubmed Central
  12. Tian Q, Song P, Jiang L, Li S, Huang H. 2014. A novel cephalosporin deacetylating acetyl xylan esterase from Bacillus subtilis with high activity toward cephalosporin C and 7-aminocephalosporanic acid. Appl. Microbiol. Biotechnol. 98: 2081-2089.
    Pubmed CrossRef
  13. Sonawane VC. 2006. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 26: 95-120.
    Pubmed CrossRef
  14. Liu Y, Gong G, Zhu C, Zhu B, Hu Y. 2010. Environmentally safe production of 7-ACA by recombinant Acremonium chrysogenum. Curr. Microbiol. 61: 609-614.
    Pubmed CrossRef
  15. Viborg AH, Sørensen KI, Gilad O, Steen-Jensen DB, Dilokpimol A, Jacobsen S, et al. 2013. Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-D-xylosidase/α-L-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis s ubsp . lactis BB-12. AMB Express 3: 56.
    Pubmed CrossRef Pubmed Central
  16. Maria A, Margarita T, IIlia I, Iskra I. 2014. Gene expression of enzymes involved in utilization of xylooligosaccharides by Lactobacillus strains. Biotechnol. Biotechnol. Equip. 28: 941-948.
    Pubmed CrossRef Pubmed Central
  17. Park JM, Han NS, Kim TJ. 2007. Rapid detection and isolation of known and putative α-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
  18. Khandeparker R, Jalal T. 2015. Xylanolytic enzyme systems in Arthrobacter sp. MTCC 5214 and Lactobacillus sp. Biotechnol. Appl. Biochem. 62: 245-254.
    Pubmed CrossRef
  19. Roos S, Engstrand L, Jonsson H. 2005. Lactobacillus gastricus sp. nov., Lactobacillus antri sp. nov., Lactobacillus kalixensis sp. nov. and Lactobacillus ultunensis sp. nov., isolated from human stomach mucosa. Int. J. Syst. Evol. Microbiol. 55: 77-82.
    Pubmed CrossRef
  20. Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, et al. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28: 4317-4331.
    Pubmed CrossRef Pubmed Central
  21. Margolles-Clark E, Tenkanen M, Söderlund H, Penttilä M. 1996. Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur. J. Biochem. 237: 553-560.
    Pubmed CrossRef
  22. Koseki T, Miwa Y, Akao T, Akita O, Hashizume K. 2006. An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris. J. Biotechnol. 121: 381-389.
    Pubmed CrossRef
  23. Krastanova I, Guarnaccia C, Zahariev S, Degrassi G, Lamba D. 2005. Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. Biochim. Biophys. Acta 1748: 222-230.
    Pubmed CrossRef
  24. Drzewiecki K, Angelov A, Ballschmiter M, Tiefenbach KJ, Sterner R, Liebl W. 2010. Hyperthermostable acetyl xylan esterase. Microb. Biotechnol. 3: 84-92.
    Pubmed CrossRef Pubmed Central
  25. Shao W, Wiegel J. 1995. Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl. Environ. Microbiol. 61: 729-733.
    Pubmed CrossRef Pubmed Central
  26. Yang CH, Liu WH. 2008. Purification and properties of an acetylxylan esterase from Thermobifida fusca. Enzyme Microb. Technol. 42: 181-186.
    Pubmed CrossRef
  27. Park SH, Yoo W, Lee CW, Jeong CS, Shin SC, Kim HW, et al. 2018. Crystal structure and functional characterization of a cold-active acetyl xylan esterase (PbAcE) from psychrophilic soil microbe Paenibacillus sp. PLoS One 13: e0206260.
    Pubmed CrossRef Pubmed Central
  28. Velikodvorskaya TV, Volkov IY, Vasilevko VT, Zverlov VV, Piruzian ES. 1997. Purification and some properties of Thermotoga neapolitana thermostable xylanase B expressed in E. coli cells. Biochemistry (Mosc) 62: 66-70.
  29. Vincent F, Charnock SJ, Verschueren KH, Turkenburg JP, Scott DJ, Offen WA, et al. 2003. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9Å resolution. J. Mol. Biol. 330: 593-606.
    CrossRef
  30. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10: 845-858.
    Pubmed CrossRef Pubmed Central
  31. Singh M K, Manoj N . 2016. A n extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability. J. Struct. Biol. 194: 434-445.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd