Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 2014~2021

AuthorJeong Yoon Lee, Seong-Jun Kim, Jinjong Myoung
Place of dutyKorea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University, Jeonju 54531, Republic of Korea
TitleMiddle East Respiratory Syndrome Coronavirus-Encoded ORF8b Inhibits RIG-I-Like Receptors in a Differential Mechanism
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
AbstractMiddle East respiratory syndrome coronavirus (MERS-CoV) belongs to the beta coronavirus subfamily and causes severe morbidity and mortality in humans especially when infected patients have underlying diseases such chronic obstructive pulmonary disease (COPD). Previously, we demonstrated that MERS-CoV-encoded ORF8b strongly inhibits MDA5- and RIG-I-mediated induction of the interferon beta (IFN-β) promoter activities. Here, we report that ORF8b seem to regulate MDA5 or RIG-I differentially as protein levels of MDA5 were significantly down-regulated while those of RIG-I were largely unperturbed. In addition, ORF8b seemed to efficiently suppress phosphorylation of IRF3 at the residues of 386 and 396 in cells transfected with RIG-I while total endogenous levels of IRF3 remained largely unchanged. Furthermore, ORF8b was able to inhibit all forms of RIG-I; full-length, RIG-I-1-734, and RIG-I-1-228, last of which contains only the CARD domains. Taken together, it is tempting to postulate that ORF8b may interfere with the CARD-CARD interactions between RIG-I and MAVS. Further detailed analysis is required to delineate the mechanisms of how ORF8b inhibits the MDA5/RIG-I receptor signaling pathway.
Full-Text
Key_wordMERS-CoV, interferon, RIG-I
References
  1. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367:1814-1820.
    Pubmed CrossRef
  2. Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et al. 2012. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 17(39). pii: 20285.
    CrossRef
  3. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. 2015. Middle East respiratory syndrome coronavirus:another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 28: 465-522.
    Pubmed CrossRef Pubmed Central
  4. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007.
    Pubmed CrossRef
  5. van den Brand JM, Smits SL, Haagmans BL. 2015. Pathogenesis of Middle East respiratory syndrome coronavirus. J. Pathol. 235: 175-184.
    Pubmed CrossRef
  6. Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. 2019. Host Determinants of MERS-CoV Transmission and Pathogenesis. Viruses 11(3). pii: E280.
    Pubmed CrossRef Pubmed Central
  7. Mubarak A, Alturaiki W, Hemida MG. 2019. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J. Immunol. Res. 2019: 6491738.
    Pubmed CrossRef Pubmed Central
  8. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, et al. 2014. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370:2499-2505.
    Pubmed CrossRef
  9. Ferguson NM, Van Kerkhove MD. 2014. Identification of MERS-CoV in dromedary camels. Lancet Infect. Dis. 14: 93-94.
    CrossRef
  10. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, et al. 2014. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14: 140-145.
    CrossRef
  11. Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. 2017. Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus. MBio. 8(2). pii: e00373-17.
    Pubmed CrossRef Pubmed Central
  12. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. 2017. Global patterns in coronavirus diversity. Virus Evol. 3: vex012.
    Pubmed CrossRef Pubmed Central
  13. Banerjee A, Falzarano D, Rapin N, Lew J, Misra V. 2019. Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat. Viruses 11(2). pii: E152.
    Pubmed CrossRef Pubmed Central
  14. Goldstein SA, Weiss SR. 2017. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus:recent advances. F1000Res. 6: 1628.
    Pubmed CrossRef Pubmed Central
  15. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13: e1006698.
    Pubmed CrossRef Pubmed Central
  16. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679.
    Pubmed CrossRef
  17. Yu P, Hu B, Shi ZL, Cui J. 2019. Geographical structure of bat SARS-related coronaviruses. Infect. Genet. Evol. 69: 224-229.
    Pubmed CrossRef
  18. Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, et al. 2018. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556: 255-258.
    Pubmed CrossRef
  19. Huang YW, Dickerman AW, Pineyro P, Li L, Fang L, Kiehne R, et al. 2013. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio. 4: e00737-00713.
    Pubmed CrossRef Pubmed Central
  20. Hayman DT. 2016. Bats as Viral Reservoirs. Annu. Rev. Virol. 3: 77-99.
    Pubmed CrossRef
  21. Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, et al. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753.
    Pubmed CrossRef Pubmed Central
  22. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323.
    Pubmed CrossRef
  23. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735.
    Pubmed CrossRef
  24. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. 2005. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23: 307-336.
    Pubmed CrossRef
  25. Xi Y, Day SL, Jackson RJ, Ranasinghe C. 2012. Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol. 5: 610-622.
    Pubmed CrossRef Pubmed Central
  26. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. 2015. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15: 405-414.
    Pubmed CrossRef
  27. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329.
    Pubmed CrossRef
  28. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801.
    Pubmed CrossRef
  29. Fujita T, Onoguchi K, Onomoto K, Hirai R, Yoneyama M. 2007. Triggering antiviral response by RIG-I-related RNA helicases. Biochimie 89: 754-760.
    Pubmed CrossRef
  30. Medzhitov R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819-826.
    Pubmed CrossRef
  31. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5mediated type I interferon induction. Nat. Immunol. 6: 981988.
    Pubmed CrossRef
  32. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167-1172.
    Pubmed CrossRef
  33. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682.
    Pubmed CrossRef
  34. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562.
    Pubmed CrossRef
  35. Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143.
    Pubmed CrossRef
  36. Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, et al. 2 008. A re t he I KKs and I KK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem. Sci. 33: 171-180.
    Pubmed CrossRef
  37. Clement JF, Meloche S, Servant MJ. 2008. The IKK-related kinases: from innate immunity to oncogenesis. Cell Res. 18:889-899.
    Pubmed CrossRef
  38. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4: 491-496.
    Pubmed CrossRef
  39. Gatot JS, Gioia R, Chau TL, Patrascu F, Warnier M, Close P, et al. 2007. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J. Biol. Chem. 282: 31131-31146.
    Pubmed CrossRef
  40. Hacker H, Karin M. 2006. Regulation and function of IKK and IKK-related kinases. Sci. STKE. 2006: re13.
    Pubmed CrossRef
  41. Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN, et al. 2002. Transcriptional profiling of interferon regulatory factor 3 target genes:direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76: 5532-5539.
    Pubmed CrossRef Pubmed Central
  42. Honda K, Taniguchi T. 2006. IRFs: master regulators of signalling by Toll-like receptors and cytosolic patternrecognition receptors. Nat. Rev. Immunol. 6: 644-658.
    Pubmed CrossRef
  43. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630.
    Pubmed CrossRef
  44. Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. 2003. Convergence of the NF-kappaB and interferon signaling pathways in the regulation of antiviral defense and apoptosis. Ann. NY Acad. Sci. 1010: 237-248.
    Pubmed CrossRef
  45. Wang J, Basagoudanavar SH, Wang X, Hopewell E, Albrecht R, Garcia-Sastre A, et al. 2010. NF-kappa B RelA subunit is crucial for early IFN-beta expression and resistance to RNA virus replication. J. Immunol. 185: 1720-1729.
    Pubmed CrossRef Pubmed Central
  46. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811.
    Pubmed CrossRef
  47. Hu J, Lou DH, Carow B, Winerdal ME, Rottenberg M, Wikstrom AC, et al. 2012. LPS regulates SOCS2 transcription in a Type I Interferon dependent autocrine-paracrine loop. PLoS One 7(1): e30166.
    Pubmed CrossRef Pubmed Central
  48. Song JW, Guan M, Zhao ZW, Zhang JJ. 2015. Type I interferons function as autocrine and paracrine factors to induce autotaxin in response to TLR activation. PLoS One 10(8): e0136629.
    Pubmed CrossRef Pubmed Central
  49. Hasan MT, Jang WJ, Tak JY, Lee BJ, Kim KW, Hur SW, et al. 2018. Effects of Lactococcus lactis subsp. lactis I2 with betaGlucooligosaccharides on growth, innate immunity and Streptococcosis resistance in olive flounder (Paralichthys olivaceus). J. Microbiol. Biotechnol. 28: 1433-1442.
    Pubmed CrossRef
  50. Liu S, Yu X, Wang Q, Liu Z, Xiao Q, Hou P, et al. 2017. Specific expression of interferon-gamma induced by synergistic activation mediator-derived systems activates innate immunity and inhibits Tumorigenesis. J. Microbiol. Biotechnol. 27: 1855-1866.
    Pubmed CrossRef
  51. Baek YH, Cheon HS, Park SJ, Lloren KKS, Ahn SJ, Jeong JH, et al. 2018. Simple, rapid and sensitive portable molecular diagnosis of SFTS virus using reverse transcriptional loopmediated isothermal amplification (RT-LAMP). J. Microbiol. Biotechnol. 28: 1928-1936.
    Pubmed CrossRef
  52. Jo G, Jeong MS, Wi J, Kim DH, Kim S, Kim D, et al. 2018. Generation and characterization of a neutralizing human monoclonal antibody to Hepatitis B Virus PreS1 from a Phage-Displayed human synthetic fab library. J. Microbiol. Biotechnol. 28: 1376-1383.
    Pubmed CrossRef
  53. Kim E, Myoung J. 2018. Hepatitis E Virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915.
    Pubmed CrossRef
  54. Park MK, Cho H, Roh SW, Kim SJ, Myoung J. 2019. Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication. Sci. Rep. 9: 2372.
    Pubmed CrossRef Pubmed Central
  55. Ngueyen TTN, Kim SJ, Lee JY, Myoung J. 2019. Zika virus proteins NS2A and NS4A are major antagonists that reduce IFN-beta promoter activity induced by the MDA5/RIG-I signaling pathway. J. Microbiol. Biotechnol. 29: 1665-1674.
    Pubmed CrossRef
  56. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335-345.
    Pubmed CrossRef Pubmed Central
  57. Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd