Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-1: 1~10

AuthorJin A Jung, Yeo Joon Yoon
Place of dutyDepartment of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
TitleDevelopment of Non-Immunosuppressive FK506 Derivatives as Antifungal and Neurotrophic Agents
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-1
AbstractFK506, also known as tacrolimus, is a clinically important immunosuppressant drug and has promising therapeutic potentials owing to its antifungal, neuroprotective, and neuroregenerative activities. To generate various FK506 derivatives, the structure of FK506 has been modified by chemical methods or biosynthetic pathway engineering. Herein, we describe the mode of the antifungal action of FK506 and the structure–activity relationship of FK506 derivatives in the context of immunosuppressive and antifungal activities. In addition, we discuss the neurotrophic mechanism of FK506 known to date, along with the neurotrophic FK506 derivatives with significantly reduced immunosuppressive activity. This review suggests the possibility to generate novel FK506 derivatives as antifungal as well as neuroregenerative/neuroprotective agents.
Full-Text
Key_wordFK506, biosynthesis, antifungal activity, neurotrophic activity
References
  1. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 40: 1256-1265.
    Pubmed CrossRef
  2. Parsons WH, Sigal NH, Wyvratt MJ. 1993. FK-506--a novel immunosuppressant. Ann. NY Acad. Sci. 685: 22-36.
    Pubmed CrossRef
  3. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, et al. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 40: 1249-1255.
    Pubmed CrossRef
  4. Ban YH, Park SR, Yoon YJ. 2016. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J. Ind. Microbiol. Biotechnol. 43: 389-400.
    Pubmed CrossRef
  5. Barreiro C, Martínez-Castro M. 2014. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl. Microbiol. Biotechnol. 98: 497-507.
    Pubmed CrossRef
  6. Mo S, Lee SK, Jin YY, Suh JW. 2016. Improvement of FK506 production in the high-yielding strain Streptomyces sp. RM7011 by engineering the supply of allylmalonyl-CoA through a combination of genetic and chemical approach. J. Microbiol. Biotechnol. 26: 233-40.
    Pubmed CrossRef
  7. Nakagawa H, Etoh T, Yokota Y, Ikeda F, Hatano K, Teratani N, et al. 1996. Tacrolimus has antifungal activities against Malassezia furfur isolated from healthy adults and patients with atopic dermatitis. Clin. Drug. Invest. 12: 244-250.
    CrossRef
  8. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. 2007. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat. Rev. Microbiol. 5: 418-430.
    Pubmed CrossRef
  9. Sharkey J, Butcher SP. 1994. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 371: 336-339.
    Pubmed CrossRef
  10. Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. 1994. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc. Natl. Acad. Sci. USA 91: 3191-3195.
    Pubmed CrossRef Pubmed Central
  11. Dumont FJ, Staruch MJ, Koprak SL, Siekierka JJ, Lin CS, Harrison R, et al. 1992. The immunosuppressive and toxic effects of FK-506 are mechanistically related: pharmacology of a novel antagonist of FK-5 06 and rapamycin. J. Exp. Med. 176: 751-760.
    Pubmed CrossRef Pubmed Central
  12. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807-815.
    CrossRef
  13. Andexer JN, Kendrew SG, Nur-e-Alam M, Lazos O, Foster TA, Zimmermann AS, et al. 2011. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA 108: 4776-4781.
  14. Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, et al. 2011. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J. Am. Chem. Soc. 133: 976-985.
    Pubmed CrossRef Pubmed Central
  15. Motamedi H, Shafiee A. 1998. The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur. J. Biochem. 256: 528-534.
    Pubmed CrossRef
  16. Ban YH, Shinde PB, Hwang JY, Song MC, Kim DH, Lim SK, et al. 2013. Characterization of FK506 biosynthetic intermediates involved in post-PKS elaboration. J. Nat. Prod. 76: 1091-1098.
    Pubmed CrossRef
  17. Breuder T, Hemenway CS, Movva NR, Cardenas ME, Heitman J. 1994. Calcineurin is essential in cyclosporin Aand FK506-sensitive yeast strains. Proc. Natl. Acad. Sci. USA 91: 5372-5376.
    Pubmed CrossRef Pubmed Central
  18. Watanabe Y, Perrino BA, Chang BH, Soderling TR. 1995. Identification in the calcineurin A subunit of the domain that binds the regulatory B subunit. J. Biol. Chem. 270: 456-460.
    Pubmed CrossRef
  19. Withee JL, Mulholland J, Jeng R, Cyert MS. 1997. An Essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol. Biol. Cell 8: 263-277.
    Pubmed CrossRef Pubmed Central
  20. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16: 2576-2589.
    Pubmed CrossRef Pubmed Central
  21. Mitchell TG, Perfect JR. 1995. Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8: 515-548.
    Pubmed CrossRef Pubmed Central
  22. Berman J, Sudbery PE. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3: 918-930.
    Pubmed CrossRef
  23. Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, et al. 2003. Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot. Cell 2: 422-430.
    Pubmed CrossRef Pubmed Central
  24. Steinbach WJ, Cramer RA Jr, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, et al. 2006. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5: 1091-1103.
    Pubmed CrossRef Pubmed Central
  25. Fox DS, Cruz MC, Sia RA, Ke H, Cox GM, Cardenas ME, et al. 2001. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol. Microbiol. 39: 835-849.
    Pubmed CrossRef
  26. da Silva Ferreira ME, Heinekamp T, Härtl A, Brakhage AA, Semighini CP, Harris SD, et al. 2007. Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genet. Biol. 44: 219-230.
    Pubmed CrossRef
  27. Bader T, Bodendorfer B, Schröppel K, Morschhäuser J. 2003. Calcineurin is essential for virulence in Candida albicans. Infect. Immun. 71: 5344-5354.
    Pubmed CrossRef Pubmed Central
  28. Blankenship JR, Heitman J. 2005. Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect. Immun. 73: 5767-5774.
    Pubmed CrossRef Pubmed Central
  29. Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, et al. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21: 546-559.
    Pubmed CrossRef Pubmed Central
  30. High KP. 1994. The antimicrobial activities of cyclosporine, FK506, and rapamycin. Transplantation 57: 1689-1700.
    Pubmed CrossRef
  31. Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. 2004. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob. Agents. Chemother. 48: 1664-1669.
    Pubmed CrossRef Pubmed Central
  32. Griffith JP, Kim JL, Kim EE, Sintchak MD, Thomson JA, Fitzgibbon MJ, et al. 1995. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12FK506 complex. Cell 82: 507-522.
    CrossRef
  33. Juvvadi PR, Fox D 3rd, Bobay BG, Hoy MJ, Gobeil SMC, Venters RA, et al. 2019. Harnessing calcineurin-FK506FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nat. Commun. 10: 4275.
    Pubmed CrossRef Pubmed Central
  34. Odom A, Del Poeta M, Perfect J, Heitman J. 1997. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob. Agents. Chemother. 41: 156-161.
    Pubmed CrossRef Pubmed Central
  35. Kontoyiannis DP, Lewis RE, Osherov N, Albert ND, May GS. 2003. Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J. Antimicrob. Chemother. 51: 313-316.
    Pubmed CrossRef
  36. Shinde PB, Ban YH, Hwang JY, Cho Y, Chen YA, Cheong E, et al. 2015. A non-immunosuppressive FK506 analogue with neuroregenerative activity produced from a genetically engineered Streptomyces strain. RSC Adv. 5: 6823-6828.
    CrossRef
  37. Lee Y, Lee KT, Lee SJ, Beom JY, Hwangbo A, Jung JA, et al. 2018. In vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates. Antimicrob. Agents Chemother. 62: e01627-18.
    Pubmed CrossRef Pubmed Central
  38. Beom JY, Jung JA, Lee KT, Hwangbo A, Song MC, Lee Y, et al. 2019. Biosynthesis of nonimmunosuppressive FK506 analogues with antifungal activity. J. Nat. Prod. 82: 2078-2086.
    Pubmed CrossRef
  39. Cullen WP, Guadliana MA, Huang LH, Kaneda K, Kojima N, Kojima Y, et al. 1992. Novel immunosuppressant agent from Streptomyces braegensis. WO Patent 1992/018506.
  40. Baumann K, Knapp H, Strnadt G, Schulz G, Grassberger MA. 1999. Carbonyl to methylene conversions at the tricarbonyl-portion of ascomycin derivatives. Tetrahedron Lett. 40: 7761-7764.
    CrossRef
  41. Chen TS, Arison BH, Wicker LS, Inamine ES, Monaghan RL. 1992. Microbial transformation of immunosuppressive compounds. I. Desmethylation of FK506 and immunomycin (FR 900520) by Actinoplanes sp. ATCC 53771. J. Antibiot. 45: 118-123.
    Pubmed CrossRef
  42. Brizuela L, Chrebet G, Bostian KA, Parent SA. 1991. Antifungal properties of the immunosuppressant FK-506:identification of an FK-506-responsive yeast gene distinct from FKB1. Mol. Cell. Biol. 11: 4616-4626.
    Pubmed CrossRef Pubmed Central
  43. Gold BG, Storm-Dickerson T, Austin DR. 1994. The immunosuppressant FK506 increases functional recovery and nerve regeneration following peripheral nerve injury. Restor. Neurol. Neurosci. 6: 287-296.
    Pubmed CrossRef
  44. Steiner JP, Dawson TM, Fotuhi M, Glatt CE, Snowman AM, Cohen N, et al. 1992. High brain densities of the immunophilin FKBP colocalized with calcineurin. Nature 358: 584-587.
    Pubmed CrossRef
  45. Snyder SH, Sabatini DM. 1995. Immunophilins and the nervous system. Nat. Med. 1: 32-37.
    Pubmed CrossRef
  46. Choi DW. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623-634.
    CrossRef
  47. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651-2661.
    Pubmed CrossRef Pubmed Central
  48. Conde M, Andrade J, Bedoya FJ, Santa Maria C, Sobrino F. 1995. Inhibitory effect of cyclosporin A and FK506 on nitric oxide production by cultured macrophages. Evidence of a direct effect on nitric oxide synthase activity. Immunology 84: 476-481.
  49. Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH. 1993. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc. Natl. Acad. Sci. USA 90: 9808-9812.
    Pubmed CrossRef Pubmed Central
  50. Butcher SP, Henshall DC, Teramura Y, Iwasaki K, Sharkey J. 1997. Neuroprotective actions of FK506 in experimental stroke:in vivo evidence against an antiexcitotoxic mechanism. J. Neurosci. 17: 6939-6946.
    Pubmed CrossRef Pubmed Central
  51. Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS. 1999. Immunophilin FK506-binding protein 52 (not FK506binding protein 12) mediates the neurotrophic action of FK506. J. Pharmacol. Exp. Ther. 289: 1202-1210.
  52. Gold BG. 1999. FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metab. Rev. 31: 649-663.
    Pubmed CrossRef
  53. Gold BG, Villafranca JE. 2003. Neuroimmunophilin Ligands:The development of novel neuroregenerative/neuroprotective compounds. Curr. Top. Med. Chem. 3: 1368-1375.
    Pubmed CrossRef
  54. Pratt WB, Toft DO. 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18: 306-360.
    Pubmed CrossRef
  55. Sétáló G Jr, Singh M, Guan X, Toran-Allerand CD. 2002. Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. J. Neurobiol. 50: 1-12.
    Pubmed CrossRef
  56. Herdegen T, Skene P, Bähr M. 1997. The c-jun transcription factor -bipotential mediator of neuronal death, survival and regeneration. Trend Neurosci. 20: 227-231.
    CrossRef
  57. Hausch F. 2015. FKBPs and their role in neuronal signaling. Biochim. Biophys. Acta 1850: 2035-2040.
    Pubmed CrossRef
  58. Schmidt MV, Paez-Pereda M, Holsboer F, Hausch F. 2012. The prospect of FKBP51 as a drug target. ChemMedChem 7: 1351-1359.
    Pubmed CrossRef
  59. Quintá HR, Maschi D, Gomez-Sanchez C, Piwien-Pilipuk G, Galigniana MD. 2010. Subcellular rearrangement of hsp90binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J. Neurochem. 115: 716-734.
    Pubmed CrossRef Pubmed Central
  60. Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, SuarezQuian C, Smith DF. 2005. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol. Endocrinol. 19: 1654-1666.
    Pubmed CrossRef
  61. Yong W, Yang Z, Periyasamy S, Chen H, Yucel S, Li W, et al. 2007. Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J. Biol. Chem. 282: 5026-5036.
    Pubmed CrossRef Pubmed Central
  62. Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, et al. 2005. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc. Natl. Acad. Sci. USA 102: 14326-14331.
    Pubmed CrossRef Pubmed Central
  63. Yang Z, Wolf IM, Chen H, Periyasamy S, Chen Z, Yong W, et al. 2006. FK506-Binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol. Endocrinol. 20: 2682-2694.
    Pubmed CrossRef Pubmed Central
  64. Hartmann J, Wagner KV, Liebl C, Scharf SH, Wang XD, Wolf M, et al. 2012. The involvement of FK5 06-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 62: 332-339.
    Pubmed CrossRef
  65. Kozany C, März A, Kress C, Hausch F. 2009. Fluorescent probes to characterise FK506-binding proteins. Chembiochem 10: 1402-1410.
    Pubmed CrossRef
  66. Gopalakrishnan R, Kozany C, Wang Y, Schneider S, Hoogeland B, Bracher A, et al. 2012. Exploration of pipecolate sulfonamides as binders of the FK506-binding proteins 51 and 52. J. Med. Chem. 55: 4123-4131.
    Pubmed CrossRef
  67. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J. 2003. Structure of the large FK506binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc. Natl. Acad. Sci. USA 100: 868-873.
    Pubmed CrossRef Pubmed Central
  68. Blackburn EA, Walkinshaw MD. 2011. Targeting FKBP isoforms with small-molecule ligands. Curr. Opin. Pharmacol. 11: 365-371.
    Pubmed CrossRef
  69. Bracher A, Kozany C, Hähle A, Wild P, Zacharias M, Hausch F. 2013. Crystal structures of the free and ligandbound FK1-FK2 domain segment of FKBP52 reveal a flexible inter-domain hinge. J. Mol. Biol. 425: 4134-4144.
    Pubmed CrossRef
  70. Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G, et al. 2015. Selective inhibitors of the FK506binding protein 51 by induced fit. Nat. Chem. Biol. 11: 33-37.
    Pubmed CrossRef
  71. Feng X, Sippel C, Bracher A, Hausch F. 2015. StructureAffinity Relationship Analysis of Selective FKBP51 Ligands. J. Med. Chem. 58: 7796-7806.
    Pubmed CrossRef
  72. Gold BG, Zeleny-Pooley M, Wang MS, Chaturvedi P, Armistead DM. 1997. A nonimmunosuppressant FKBP-12 ligand increases nerve regeneration. Exp. Neurol. 147: 269-278.
    Pubmed CrossRef
  73. Armistead DM, Badia MC, Deininger DD, Duffy JP, Saunders JO, Tung RD, et al. 1995. Design, synthesis and structure of non-macrocyclic inhibitors of FKBP12, the major binding protein for the immunosuppressant FK506. Acta. Crystallogr. D 51: 522-528.
    Pubmed CrossRef
  74. Costantini LC, Cole D, Chaturvedi P, Isacson O. 2001. Immunophilin ligands can prevent progressive dopaminergic degeneration in animal models of Parkinson’s disease. Eur. J. Neurosci. 13: 1085-1092.
    Pubmed CrossRef
  75. Steiner JP, Connolly MA, Valentine HL, Hamilton GS, Dawson TM, Hester L, et al. 1997. Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat. Med. 3: 421-428.
    Pubmed CrossRef
  76. Steiner JP, Hamilton GS, Ross DT, Valentine HL, Guo H, Connolly MA, et al. 1997. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc. Natl. Acad. Sci. USA 94: 2019-2024.
    Pubmed CrossRef Pubmed Central
  77. Ruan B, Pong K, Jow F, Bowlby M, Crozier RA, Liu D, et al. 2008. Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc. Natl. Acad. Sci. USA 105: 33-38.
    CrossRef
  78. Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, et al. 2003. Neuroprotective agents for clinical trials in Parkinson's disease: a systematic assessment. Neurology 60: 1234-1240.
    Pubmed CrossRef
  79. NINDS NET-PD Investigators. 2007. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology 68: 20-28.
    Pubmed CrossRef
  80. Ban YH, Lee JH, Gu GR, Lee B, Mo S, Kwon HJ, et al. 2013. Mutational biosynthesis of a FK506 analogue containing a non-natural starter unit. Mol. Biosyst. 9: 944-947.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd