전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Horton T, Kroh A, Ahyong S, Bailly N, Boyko CB, Brandão SN, et al. 2019 World Register of Marine Species (WoRMS). Available from http://www.marinespecies.org/aphia.php?p=stats.
  2. Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115: 6506-6511.
    Pubmed PMC CrossRef
  3. Herndl G, Weinbauer M. 2003. Marine microbial food web structure and function, pp. 265-277. Marine science frontiers for Europe, Ed. Springer.
    CrossRef
  4. Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10: 538-550.
    Pubmed CrossRef
  5. Lidicker Jr WZ. 1979. A clarification of interactions in ecological systems. Bioscience 29: 475-477.
    CrossRef
  6. Seymour JR, Amin SA, Raina J-B, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2: 17065.
    Pubmed CrossRef
  7. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3:331-335.
    Pubmed PMC CrossRef
  8. Paul C, Pohnert G. 2011. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6: e21032.
    Pubmed PMC CrossRef
  9. Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ. 2007. Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J. Am. Chem. Soc. 129: 478-479.
    Pubmed CrossRef
  10. Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. 2009. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl. Acad. Sci. USA 106: 17071-17076.
    Pubmed PMC CrossRef
  11. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. USA 112: 453-457.
    Pubmed PMC CrossRef
  12. Amin SA, Parker MS, Armbrust EV. 2012. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76: 667-684.
    Pubmed PMC CrossRef
  13. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T. 2006. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int. J. Syst. Evol. Microbiol. 56: 1293-1304.
    Pubmed CrossRef
  14. Buchan A, LeCleir GR, Gulvik CA, González JM. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12: 686-698.
    Pubmed CrossRef
  15. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90-93.
    Pubmed CrossRef
  16. Park S, Park JM, Yoon JH. 2018. Pseudoruegeria insulae sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 68: 3587-3592.
    Pubmed CrossRef
  17. Park S, Park JM, Lee JS, Oh TK, Yoon JH. 2018. Pseudoruegeria litorisediminis sp. nov., a novel lipolytic bacterium of the family Rhodobacteraceae isolated from a tidal flat. Arch. Microbiol 200: 1183-1189.
    Pubmed CrossRef
  18. Lee JB, Kim H, Park DS, Yang JH, Chun YY, Lee KH, et al. 2014. Pseudoruegeria limi sp. nov. isolated from mud flats in the Yellow Sea in Korea. Antonie Van Leeuwenhoek 105: 987-994.
    Pubmed CrossRef
  19. Cha IT, Park I, Lee HW, Lee H, Park JM, Roh SW, et al. 2016. Pseudoruegeria aestuarii sp. nov., of the family Rhodobacteraceae, isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 66: 3125-3131.
    Pubmed CrossRef
  20. Park S, Jung YT, Won SM, Yoon JH. 2014. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol. 64: 3276-3281.
    Pubmed CrossRef
  21. Hyun DW, Shin NR, Kim MS, Kim PS, Kim JY, Whon TW, et al. 2013. Pseudoruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis discus hannai. Int. J. Syst. Evol. Microbiol. 63: 4626-4632.
    Pubmed CrossRef
  22. Jung YT, Kim BH, Oh TK, Yoon JH. 2010. Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria. Int. J. Syst. Evol. Microbiol. 60: 1177-1181.
    Pubmed CrossRef
  23. Yoon JH, Lee SY, Kang SJ, Lee CH, Oh TK. 2007. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 57: 542-547.
    Pubmed CrossRef
  24. Park S, Jung Y-T, Won S-M, Yoon J-H. 2014. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol. 64: 3276-3281.
    Pubmed CrossRef
  25. Zhang Y, Xu Y, Fang W, Wang X, Fang Z, Xiao Y. 2017. Pseudoruegeria marinistellae sp. nov., isolated from an unidentified starfish in Sanya, China. Antonie Van Leeuwenhoek 110: 187-194.
    Pubmed CrossRef
  26. Pohlner M, Marshall I, Schreiber L, Cypionka H, Engelen B. 2017. Draft genome sequence of Pseudoruegeria sp. SK021, a representative of the marine Roseobacter group, isolated from north sea sediment. Genome Announc. 5(24): e00541-17.
    Pubmed PMC CrossRef
  27. Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJ, et al. 2019. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20: 615-628.
    Pubmed CrossRef
  28. Croft MT, Warren MJ, Smith AG. 2006. Algae need their vitamins. Eukaryot. Cell 5: 1175-1183.
    Pubmed PMC CrossRef
  29. Roosaare M, Puustusmaa M, Möls M, Vaher M, Remm M. 2018. PlasmidSeeker: identification of known plasmids from bacterial whole genome sequencing reads. Peer J. 6: e4588.
    Pubmed PMC CrossRef
  30. Na S-I, Kim YO, Yoon S-H, Ha S-m, Baek I, Chun J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56: 280-285.
    Pubmed CrossRef
  31. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.
    Pubmed PMC CrossRef
  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624.
    Pubmed PMC CrossRef
  33. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-D462.
    Pubmed PMC CrossRef
  34. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36.
    Pubmed PMC CrossRef
  35. Consortium TGO. 2014. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43: D1049-D1056.
    Pubmed PMC CrossRef
  36. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87.
    Pubmed PMC CrossRef
  37. Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Res. 43: W39-W49.
    Pubmed PMC CrossRef
  38. Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 3(3): 10.1128/microbiolspec.MB-0011-2014.
    Pubmed PMC CrossRef
  39. Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. 2014. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat. Struct. Mol. Biol. 21: 528.
    Pubmed PMC CrossRef
  40. Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, et al. 2017. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 45: 3615-3626.
    Pubmed PMC CrossRef
  41. Sharma CM, Vogel J. 2014. Differential RNA-seq: the approach behind and the biological insight gained. Curr. Opin. Microbiol. 19:97-105.
    Pubmed CrossRef
  42. Grossart H-P, Simon M. 2007. Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47: 163-176.
    CrossRef
  43. Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S. 2016. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29.
    Pubmed CrossRef
  44. Cole JJ. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13: 291-314.
    CrossRef
  45. Tang YZ, Koch F, Gobler CJ. 2010. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc. Natl. Acad. Sci. USA 107: 20756-20761.
    Pubmed PMC CrossRef
  46. Jurgenson CT, Begley TP, Ealick SE. 2009. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 78: 569-603.
    Pubmed PMC CrossRef
  47. Zempleni J, Wijeratne SS, Hassan YI. 2009. Biotin. Biofactors 35: 36-46.
    Pubmed PMC CrossRef
  48. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19: 390-412.
    Pubmed CrossRef
  49. Bernard T, Jebbar M, Rassouli Y, Himdi-Kabbab S, Hamelin J, Blanco C. 1993. Ectoine accumulation and osmotic regulation in Brevibacterium linens. Microbiology 139: 129-136.
    CrossRef
  50. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial quorum sensing and microbial community interactions. mBio. 9: e02331-02317.
    Pubmed PMC CrossRef
  51. Klein I, von Rad U, Durner J. 2009. Homoserine lactones: do plants really listen to bacterial talk? Plant Signal Behav. 4: 50-51.
    Pubmed PMC CrossRef
  52. Robinson SL, Christenson JK, Wackett LP. 2019. Biosynthesis and chemical diversity of β-lactone natural products. Nat. Prod. Rep. 36: 458-475.
    Pubmed CrossRef
  53. Oldfield E, Lin FY. 2012. Terpene biosynthesis: modularity rules. Angew. Chem. Intl. Ed. Engl. 51: 1124-1137.
    Pubmed PMC CrossRef
  54. Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, et al. 2015. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 112: 857-862.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles