Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-1: 21~30

AuthorDae-Hye Choi, Joon-Hee Han, Keun-Hyung Yu, Min Hong, Sun-Yeop Lee, Ka-Hee Park, Soo-Ung Lee, Tae-Hyung Kwon
Place of dutyDepartment of Research and Development, Chuncheon Bio-industry Foundation (CBF), Chuncheon 24232, Republic of Korea
TitleAntioxidant and Anti-Obesity Activities of Polygonum cuspidatum Extract through Alleviation of Lipid Accumulation on 3T3-L1 Adipocytes
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-1
AbstractNatural products are widely used due to their various biological activities which include antiinflammatory, antioxidant, and anti-obesity effects. In this study, we determined the antioxidative and anti-obesity effects of Polygonum cuspidatum 50% ethanol extract (PEE). The antioxidative effect of PEE was evaluated using its radical scavenging activity, total phenolic content, and reducing power. The anti-obesity effect of PEE was investigated using 3T3-L1 adipocytes. The antioxidative activity of PEE was progressively increased in various concentrations, mainly due to the presence of phenolic compounds. PEE also alleviated lipid accumulation on 3T3-L1 adipocytes and downregulated the mRNA and protein production of adipogenesis-related (SREBP-1c, PPARγ, C/EBPα) and lipogenesis-related (aP2, FAS, ACC) markers. Furthermore, we found that the inhibitory effect on lipid accumulation via PEE was caused by the alleviation of NF-κB, p38 MAPK, ERK1/2, and JNK at the protein level. Taken together, our results imply that PEE is a potential antioxidant that can prevent obesityassociated disorders.
Full-Text
Key_word3T3L1 cells, lipogenesis, adipogenesis, antioxidant, polygonum cuspidatum
References
  1. Kopleman PG. 1994. Causes and consequences of obesity. Med. Int. 22: 385-388.
  2. Gr undy SH. 1998. Mutifactorial causation of obesity:implication for prevention. Am. J. Cli. Nutr. 67: 563-572.
    Pubmed CrossRef
  3. B arr EL, Cameron AJ, Balkau B, Zimmet PZ, Welborn TA, Tonkin AM, et al. 2010. HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian diabetes, obesity and lifestyle study. Diabetologia 53: 79-88.
    Pubmed CrossRef
  4. L iberopoulos EN, Mikhailidis DP, Elisaf MS. 2005. Diagnosis and management of the metabolic syndrome in obesity. Obes. Rev. 6: 283-296.
    Pubmed CrossRef
  5. M okdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. 2003. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289: 76-79.
    Pubmed CrossRef
  6. K orenblat KM, Fabbrini E, Mohammed BS, Klein S. 2008. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134: 1369-1375.
    Pubmed CrossRef Pubmed Central
  7. Sorisky A. 1999. From preadipocyte to adipocyte:differentiation-directed signals of insulin from the cell surface to the nucleus. Crit. Rev. Clin. Lab. Sci. 36: 1-34.
    Pubmed CrossRef
  8. Pantoja C, Huff JT, Yamamoto KR. 2008. Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol. Biol. Cell. 19: 4032-4041.
    Pubmed CrossRef Pubmed Central
  9. Ch o EJ, Rahman A, Kim SW, Beak YM, Hwang HJ, Oh JY, et al. 2008. Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocyetes. J. Microbiol. Biotechnol. 18: 80-87.
  10. Gregoire FM, Smas CM, Sul HS. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78: 783-809.
    Pubmed CrossRef
  11. Ch o SY, Park PJ, Shin HJ, Kim YK, Shin DW, Shin ES, et al. 2007. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am J. Physiol. Endocrinol. Metab. 292: E1166-E1172
    Pubmed CrossRef
  12. Jou PC, Ho BY, Hsu YM, Pan TM. 2010. The effect of Monascus secondary polyketide metabolites, monascin and ankaflavin, on adipogenesis and lipogenesis activity in 3T3 L1. J. Agric. Food Chem. 58: 12703-12709.
    Pubmed CrossRef
  13. Th ompson GM, Trainor D, Biswas C, Lacerte C, Berger JP, Kelly LJ. 2004. A high-capacity assay for PPAR-gamma ligand regulation of endogenous aP2 expression in 3T3-L1 cells. Anal. Biochem. 330: 21-28.
    Pubmed CrossRef
  14. Ros en ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev. 14: 1293-1307.
  15. Ta bor DE, Kim JB, Spiegelman BM, Edwards PA. 1999. Identification of conserves cis-elements and transcription factors required for sterol-regulated transcription of stearoyl CoA desaturase 1 and 2. Biol. Chem. 274: 20603-20610.
    Pubmed CrossRef
  16. Kon g CS, Kim JA, Kim SK. 2009. Anti-obesity effect of sulfated glucosamine by AMPK signal pathway in 3T3-L1 adipocytes. Food Chem. Toxicol. 47: 2401-2406.
    Pubmed CrossRef
  17. Johnson GL and Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912.
    Pubmed CrossRef
  18. B aker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. 2011. Cell Metab. 13: 11-22.
    Pubmed CrossRef Pubmed Central
  19. B hathena SJ, Velasquez MT. 2002. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 76: 1191-1201.
    Pubmed CrossRef
  20. Lin J, Della-Fera MA, Balie CA. 2005. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obesity Res. 13: 982-990.
    Pubmed CrossRef
  21. Zh ou Z, Miwa M, Nara K, Wu B, Nakaya H, Lian C, et al. 2003. Patch e stablishment a nd d evelopment of a clonal plant, Polygonym cuspidatum, on Mount Fuji. Mol. Ecol. 12: 1361-1373.
    Pubmed CrossRef
  22. X ing WW, Wu JZ, Jia M, Du J, Zhang H, Qin LP. 2009. Effects of polydatin from Polygonum cuspidatum on lipid profile in hyperlipidemic rabbits. Biomed. Pharmacother. 64: 457-462.
    Pubmed CrossRef
  23. A richi H, Kimura Y, Okuda H, Baba K, Kozawa M, Arichi S. 1982. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. Chem. Pharm. Bull. (Tokyo). 30: 1766-1770.
    Pubmed CrossRef
  24. Kuo CH, Chen BY, Liu YC, Chang CMJ, Deng TS, Chen JH, et al. 2014. Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum. Molecules 19: 67-7.
    Pubmed CrossRef Pubmed Central
  25. Folin O, Denis W. 1912. On phosphotungstic-phophomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-243.
  26. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.
    CrossRef
  27. Re R, Pellegrini N, Proteggente A, Pannala A, Tang M, Rice Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26: 1231-1237.
    CrossRef
  28. Oyaizu M. 1986. Studies on products of browning reaction:antioxidant activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315.
    CrossRef
  29. Wu YX, Kim YJ, Li S., Yun MC, Yoon JM, Kim JY, et al. Anti-obese effects of mulberry (Morus alba L.) root bark through the inhibition of digestive enzymes and 3T3-L1 adipocyte differentiation. 2015. Korean J. Food Preserv. 22: 27-35.
    CrossRef
  30. Kw on TH, Kim TW, Kim CG, Kim TW, Park NH. 2013. Antioxidant activity of various solvent fractions from edible brown alga, Eisenia bicyclcis a nd i ts a ctive compounds. J. Food Sci. 15: C679-C684.
    Pubmed CrossRef
  31. J eong DW, Cho CH, Lee JS, Lee SH, Kim T, Kim DO. 2018. Deastringent peel extracts of persimmon (Diosyros kaki thumb. cv. Cheondo-bansi) p rotect neuronal PC-12 and SHSY5Y cells against oxidative stress. J. Microbiol. Biotechnol. 28: 1094-1104.
    Pubmed CrossRef
  32. Kim NY, Yim TB, Lee HY. 2015. Skin anti-aging activities of bacteriochlorophyll a from photosynthetic bacteria, Rhodobacter sphaeroides. J. Microbiol. Biotechnol. 25: 1589-1598.
    Pubmed CrossRef
  33. Upadhyay S a nd D ixit M. 2015. Role of p olyphenols a nd other phytochemicals on molecular signaling. Oxid. Med. Cell Longev. 2015: 504253.
    Pubmed CrossRef Pubmed Central
  34. Tang Y and Tsao R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. 2017. Mol. Nutr. Food Res. 61: 1600767.
    Pubmed CrossRef
  35. Izuegbuna O, Otunola G, Bradley G. 2019. Chemical composition, antioxidant, anti-inflammatory, and cytotoxic activities of Opuntia stricta cladodes. PLoS One 14: e02209682.
    Pubmed CrossRef Pubmed Central
  36. M ayouf N, Charef N, Saoudi S, Baghiani A, Khennouf S, Arrar L. 2019. Antioxidant and anti-inflammatory effect of Asphodelus microcarpus methanolic extracts. J. Ethnopharmacol. 39: doi.org/10.1016/j.jep.2019.111914.
    Pubmed CrossRef
  37. Wa ng Y, Lee PS, Chen YF, Ho CT, Pan MH. 2016. Suppression of adipogenesis by 5-hydroxy-3,6,7,8,3’,4’ hexamethoxyflavone from orange peel in 3T3-L1 cells. J. Med. Food. 19: 830-835.
    Pubmed CrossRef
  38. Zebis ch K, Voigt V, Wabitsch M, Brandsch M. 2012. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 425: 88-90.
    Pubmed CrossRef
  39. Moseti D, Regassa A, Kim WK. 2016. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 17: 124.
    Pubmed CrossRef Pubmed Central
  40. L efterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, et al. 2008. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22: 2941-2952.
    Pubmed CrossRef Pubmed Central
  41. Munshi A, Ramesh R. 2013. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4: 401-408.
    Pubmed CrossRef Pubmed Central
  42. L i KK, Liu CL, Shiu HT, Wong HL, Siu WS, Zhang C, et al. 2016. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes. Sci. Rep. 1: 20172.
  43. Zhang T, Yamamoto N, Yamashita Y, Ashida H. 2014. The chalcones cardamonin and flavokawain B inhibit the differentiation of preadipocytes to adipocytes by activating ERK. Arch. Biochem. Biophys. 15: 44-54.
    Pubmed CrossRef
  44. Zh ang C, Teng L, Shi Y, Jin J, Xue Y, Shang K, et al. 2002. Effect of emodin on proliferation and differentiation of 3T3 L1 preadipocyte and FAS activity. Chin. Med. J. 115: 1035-1038.
  45. Chen Z, Zhang L, Yi J, Yang Z, Zhang Z, Li Z. 2012. Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPARγ-agonist activity. J. Biol. Chem. 113: 3547-3558.
    Pubmed CrossRef
  46. Son g P, Kim JH, Ghim J, Yoon JH, Lee A, Kwon Y, et al. 2013. Emodin regulates glucose utilization by activating AMP-activated protein kinase. J. Biol. Chem. 288: 5732-5742.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd