Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-1: 136~145

AuthorHee Su Kim, Minsik Kim, Won-Kun Park, Yong Keun Chang
Place of dutyDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
TitleEnhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-1
AbstractChlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50oC was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.
Full-Text
Key_wordChlorella sp. HS2, fed-batch cultivation, elemental analysis, heat shock stress, lipid productivity
References
  1. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101: 1406-1413.
    Pubmed CrossRef
  2. Richardson JW, Johnson MD, Outlaw JL. 2012. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res. 1: 93-100.
    CrossRef
  3. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36.
    Pubmed CrossRef
  4. Yan D, Lu Y, Chen YF, Wu QY. 2011. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol. 102: 6487-6493.
    Pubmed CrossRef
  5. Park WK, Moon M, Shin SE, Cho JM, Suh WI, Chang YK, et al. 2018. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 29: 71-79.
    CrossRef
  6. Morales-Sánchez D, Martinez-Rodriguez OA, Martinez A. 2016. Heterotrophic cultivation of microalgae: Production of metabolites of commercial interest. J. Chem. Technol. Biotechnol. 92: 925-936.
    CrossRef
  7. Jeon JY, Kwon JS, Kang ST, Kim BR, Jung YC, Han JG, et al. 2014. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris. Biotechnol. Progr. 30: 736-743.
    Pubmed CrossRef
  8. Kim M, Lee B, Kim HS, Nam K, Moon M, Oh H-M, et al. 2019. Increased biomass and lipid production of Ettlia sp. YC001 by optimized C and N sources in heterotrophic culture. Sci. Rep. 9: 6830.
    Pubmed CrossRef Pubmed Central
  9. Binnal P, Babu PN. 2017. Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. S. Afr. J. Chem. Eng. 23: 26-37.
    CrossRef
  10. Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B. 2016. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Prep. Biochem. Biotech. 46: 368-375.
    Pubmed CrossRef
  11. Wang T, Tian X, Liu T, Wang Z, Guan W, Guo M, et al. 2017. A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochem. 60: 74-83.
    CrossRef
  12. Li X, Xu H, Wu Q. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98: 764-771.
    Pubmed CrossRef
  13. Xu H, Miao X, Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126: 499-507.
    Pubmed CrossRef
  14. Garcia-Ochoa F, Gomez E. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27: 153-176.
    Pubmed CrossRef
  15. Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, et al. 2013. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran J. Environ. Healt. 10: 6
    Pubmed CrossRef Pubmed Central
  16. Yun J-H, Cho D-H, Heo J, Lee YJ, Lee B, Chang YK, et al. 2019. Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. J. Appl. Phycol. 31: 2245-2258.
    CrossRef
  17. Griffiths MJ, van Hille RP, Harrison STL. 2014. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 98: 2345-2356.
    Pubmed CrossRef
  18. Nayak M, Suh WI, Lee B, Chang YK. 2018. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers. Manag. 156: 45-52.
    CrossRef
  19. Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, et al. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244: 1216-1226.
    Pubmed CrossRef
  20. Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. 2014. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a singlestage fed-batch mode under mixotrophic condition. Bioresour. Technol. 170: 115-124.
    Pubmed CrossRef
  21. Wang CC, Lan CQ. 2018. Effects of shear stress on microalgae - A review. Biotechnol. Adv. 36: 986-1002.
    Pubmed CrossRef
  22. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509.
  23. Sung MG, Lee B, Kim CW, Nam K, Chang YK. 2017. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Bioresour. Technol. 229: 20-25.
    Pubmed CrossRef
  24. Kwak M, R oh S , Yang A , Lee H, C hang Y K. 2 019. H igh shear-assisted solvent extraction of lipid from wet biomass of Aurantiochytrium sp. KRS101. Sep. Purif. Technol. 227: 115666.
    CrossRef
  25. Lim HC, Shin HS. 2013. Fed-batch Cultures, pp. 54-55. 1st Ed. Cambridge University Press, New York.
    CrossRef
  26. Feng X, Walker TH, Bridges WC, Thornton C, Gopalakrishnan K. 2014. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 166: 17-23.
    Pubmed CrossRef
  27. Guldhe A, Ansari FA, Singh P, Bux F. 2017. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 99: 47-53.
  28. Maroneze MM, Barin JS, de Menezes CR, Queiroz MI, Zepka LQ, Jacob-Lopes E. 2014. Treatment of cattleslaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Sci. Agric. 71: 521-524.
    CrossRef
  29. Okabe M, Kuwajima T, Satoh M, Kimura K, Okamura K, Okamoto R. 1992. Preferential and high-yield production of a cephamycin C by dissolved oxygen controlled fermentation. J. Ferment. Bioeng. 73: 292-296.
    CrossRef
  30. Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC. 2010. Oxygen uptake rate in microbial processes: an overview. Biochem. Eng. J. 49: 289-307.
    CrossRef
  31. Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ. 2004. Fundamental connections among organism C : N : P stoichiometry, macromolecular composition, and growth. Ecology 85: 1217-1229.
    CrossRef
  32. Shen XF, Chu FF, Lam PKS, Zeng RJ. 2015. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 81: 294-300.
    Pubmed CrossRef
  33. Chen Y-H, Walker TH. 2012. Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour. Technol. 114: 512-517.
    Pubmed CrossRef
  34. Shi XM, Jiang Y, Chen F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Progr. 18: 723-727.
    Pubmed CrossRef
  35. Eixler S, Karsten U, Selig U. 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53-60.
    CrossRef
  36. G. Belotti MB, B. Caprariis, P. Filippis, M. Scarsella. 2013. Effect of nitrogen and phosphorus starvations on Chlorella vulgaris lipids productivity and quality under different trophic regimens for biodiesel production. Am. J. Plant Sci. 4: 44-51.
    CrossRef
  37. Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ. 2014. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour. Technol. 152: 241-246.
    Pubmed CrossRef
  38. Bartholomew W, Karow E, Sfat M, Wilhelm R. 1950. Oxygen transfer and agitation in submerged fermentations. Effect of air flow and agitation rates upon fermentation of Penicillium chrysogenum and Streptomyces griseus. Ind. Eng. Chem. 42: 1810-1815.
    CrossRef
  39. Oldshue JY. 1966. Fermentation mixing scale-up techniques. Biotechnol. Bioeng. 8: 3-24.
    CrossRef
  40. Bauer S, Shiloach J. 1974. Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor. Biotechnol. Bioeng. 16: 933-941.
    Pubmed CrossRef
  41. D’Alessandro EB, Antoniosi Filho NR. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sust. Energ. Rev. 58: 832-841.
    CrossRef
  42. Li Y, Yuan Z, Mu J, Chen D, Feng B. 2013. Proteomic analysis of lipid accumulation in chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energ. Fuel. 27: 4031-4040.
    CrossRef
  43. Teoh M-L, Phang S-M, Chu W-L. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress. J. Appl. Phycol. 25: 285-297.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd