Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 1938~1946

AuthorWoo Soo Jeong, Yu-Ri Lee, Seong-Jin Hong, Su-Jeong Choi, Ji-Ho Choi, Shin-Young Park, Eui-Jeon Woo, Young Min Kim, Bo Ram Park
Place of dutyDepartment of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Republic of Korea
TitleCarboxy-Terminal Region of a Thermostable CITase from Thermoanaerobacter thermocopriae Has the Ability to Produce Long Isomaltooligosaccharides
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
AbstractIsomaltooligosaccharides (IMOs) have good prebiotic effects, and long IMOs (LIMOs) with a degree of polymerization (DP) of 7 or above show improved effects. However, they are not yet commercially available, and require costly enzymes and processes for production. The Nterminal region of the thermostable Thermoanaerobacter thermocopriae cycloisomaltooligosaccharide glucanotransferase (TtCITase) shows cyclic isomaltooligosaccharide (CI)-producing activity owing to a catalytic domain of glycoside hydrolase (GH) family 66 and carbohydrate-binding module (CBM) 35. In the present study, we elucidated the activity of the C-terminal region of TtCITase (TtCITase-C; Met740–Phe1,559), including a CBM35-like region and the GH family 15 domain. The domain was successfully cloned, expressed, and purified as a single protein with a molecular mass of 115 kDa. TtCITase-C exhibited optimal activity at 40°C and pH 5.5, and retained 100% activity at pH 5.5 after 18-h incubation. TtCITase-C synthesized α-1,6 glucosyl products with over seven degrees of polymerization (DP) by an α-1,6 glucosyl transfer reaction from maltopentaose, isomaltopentaose, or commercialized maltodextrins as substrates. These results indicate that TtCITase-C could be used for the production of α-1,6 glucosyl oligosaccharides with over DP7 (LIMOs) in a more cost-effective manner, without requiring cyclodextran.
Full-Text
Key_wordCycloisomalto-oligosaccharide glucanotransferase, cyclodextran, long isomaltooligosaccharides, Thermoanaerobacter thermocopriae
References
  1. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412.
  2. Crittenden RG, Playne MJ. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361.
  3. Kim Y-M, Seo M-Y, Kang H-K, Atsuo K, Kim D. 2009. Construction of a fusion enzyme of dextransucrase and dextranase: application for one-step synthesis of isomaltooligosaccharides. Enzyme Microb. Technol. 44: 159-164.
  4. Sadahiro J, Mori H, Saburi W, Okuyama M, Kimura A. 2015. Extracellular and cell-associated forms of Gluconobacter oxydans dextran dextrinase change their localization depending on the cell growth. Biochem. Biophys. Res. Commun. 456: 500-505.
  5. Debnam ES, Denholm EE, Grimble GK. 1998. Acute and chronic exposure of rat intestinal mucosa to dextran promotes SGLT1-mediated glucose transport. Eur. J. Clin. Invest. 28: 651-658.
  6. Kaneko T, Kohmoto T, Kikuchi H, Shiota M, Iino H, Mitsuoka T. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobactcria. Biosci. Biotechnol. Biochem. 58: 2288-2290.
  7. Shinoki A, Lang W, Thawornkuno C, Kang HK, Kumagai Y, Okuyama M, et al. 2013. A novel mechanism for the promotion of quercetin glycoside absorption by megalo α1,6-glucosaccharide in the rat small intestine. Food Chem. 136: 293-296.
  8. Hara H, Kume S, Iizuka T, Fujimoto Y, Kimura A. 2018. Enzymatically synthesized megalo-type isomaltosaccharides enhance the barrier function of the tight junction in the intestinal epithelium. Biosci. Biotechnol. Biochem. 82: 629-635.
  9. Joe GH, Andoh M, Shinoki A, Lang W, Kumagai Y, Sadahiro J, et al. 2016. Megalo-type α-1,6-glucosaccharides induce production of tumor necrosis factor α in primary macrophages via toll-like receptor 4 signaling. Biomed. Res. 37: 179-186.
  10. Oguma T, Horiuchi T, Kobayashi M. 1993. Novel cyclic dextrins, cycloisomaltooligosaccharides, from Bacillus s p . T3040 culture. Biosci. Biotechnol. Biochem. 57: 1225-1227.
  11. Funane K, Terasawa K, Mizuno Y, Ono H, Miyagi T, Gibu S, et al. 2007. A novel cyclic isomaltooligosaccharide (cycloisomaltodecaose, CI-10) produced by Bacillus circulans T-3040 displays remarkable inclusion ability compared with cyclodextrins. J. Biotechnol. 130: 188-192.
  12. Funane K, Terasawa K, Mizuno Y, Ono H, Gibu S, Tokashiki T, et al. 2008. Isolation of Bacillus and Paenibacillus bacterial strains that produce large molecules of cyclic isomaltooligosaccharides. Biosci. Biotechnol. Biochem. 72: 3277-3280.
  13. Kobayashi M, Funane K, Oguma T. 1995. Inhibition of dextran and mutan synthesis by cycloisomaltooligosaccharides. Biosci. Biotechnol. Biochem. 59: 1861-1865.
  14. Suzuki R, Terasawa K, Kimura K, Fujimoto Z, Momma M, Kobayashi M, et al. 2012. Biochemical characterization of a novel cycloisomaltooligosaccharide glucanotransferase from Paenibacillus sp. 598K. Biochim. Biophys. Acta 1824: 919-924.
  15. Oguma T, Kitao S, Kobayashi M. 2014. Purification and characterization of cycloisomaltooligosaccharide glucanotransferase and cloning of cit from Bacillus circulans U-155. J. Appl. Glycosci. 61: 93-97.
  16. Yang S-J, Ko J-A, Kim H-S, Jo M-H, Lee H-N, Park B-R, et al. 2018. Biochemical characterization of alkaliphilic cyclodextran glucanotransferase from an alkaliphilic bacterium, Paenibacillus daejeonensis. J. Microbiol. Biotechnol. 28: 2029-2035.
  17. Yang S-J, Choi S-J, Park B-R, Kim Y-M. 2019. Thermostable CITase from Thermoanaerobacter thermocopriae shows negative cooperativity. Biotechnol. Lett. 41: 625-632.
  18. Funane K, Ichinose H, Araki M, Suzuki R, Kimura K, Fujimoto Z, et al. 2014. Evidence for cycloisomaltooligosaccharide production from starch by Bacillus circulans T-3040. Appl. Microbiol. Biotechnol. 98: 3947-3954.
  19. Ichinose H, Suzuki R, Miyazaki T, Kimura K, Momma M, Suzuki N, et al. 2017. Paenibacillus s p . 598K 6 -αglucosyltransferase is essential for cycloisomaltooligosaccharide synthesis from α-(1 → 4)-glucan. Appl. Microbiol. Biotechnol. 101: 4115-4128.
  20. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  21. Mao X, Wang S, Kan F, Wei D, Li F. 2012. A novel dextran dextrinase from Gluconobacter oxydans DSM-2003: Purification and properties. Appl. Biochem. Biotechnol. 168: 1256-1264.
  22. Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, et al. 2014. Structural elucidation of the cyclization mechanism of α-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J. Biol. Chem. 289: 12040-12051.
  23. Mitchell F, Miles S, Neres J, Bichenkova E, Bryce R. 2010. Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase. Biophys. J. 98: L38.
  24. Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, et al. 2015. Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J. Biochem. 159: 331-339.
  25. Ota M, Okamoto T, Wakabayashi H. 2009. Action of transglucosidase from Aspergillus niger on maltoheptaose and [U-13C] maltose. Carbohydr. Res. 344: 460-465.
  26. Yamamoto K, Yoshikawa K, Okada S. 1993. Structure of dextran synthesized by dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 57: 1450-1453.



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd