Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-2: 271~278

AuthorGyeong Soo Ko, Quyet Thang Nguyen, Do Hyeon Kim, Jin Kuk Yang
Place of dutyDepartment of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
TitleBiochemical and Molecular Characterization of Glycerol Dehydrogenas from Klebsiella pneumoniae
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-2
AbstractGlycerol dehydrogenase (GlyDH) catalyzes the oxidation of glycerol to dihydroxyacetone (DHA), which is the first step in the glycerol metabolism pathway. GlyDH has attracted great interest for its potential industrial applications, since DHA is a precursor for the synthesis of many commercially valuable chemicals and various drugs. In this study, GlyDH from Klebsiella pneumoniae (KpGlyDH) was overexpressed in E. coli and purified to homogeneity for biochemical and molecular characterization. KpGlyDH exhibits an exclusive preference for NAD+ over NADP+. The enzymatic activity of KpGlyDH is maximal at pH 8.6 and pH 10.0. Of the three common polyol substrates, KpGlyDH showed the highest kcat/Km value for glycerol, which is three times higher than for racemic 2,3-butanediol and 32 times higher than for ethylene glycol. The kcat value for glycerol oxidation is notably high at 87.1 ± 11.3 sec-1. KpGlyDH was shown to exist in an equilibrium between two different oligomeric states, octamer and hexadecamer, by size-exclusion chromatography analysis. KpGlyDH is structurally thermostable, with a Tm of 83.4oC, in thermal denaturation experiment using circular dichroism spectroscopy. The biochemical and biophysical characteristics of KpGlyDH revealed in this study should provide the basis for future research on its glycerol metabolism and possible use in industrial applications.
Full-Text
Key_wordGlycerol dehydrogenase, gldA, dihydroxyacetone production
References
  1. Wichmann R, Vasic-Racki D. 2005. Cofactor regeneration at the lab scale. Adv. Biochem. Eng Biotechnol. 92: 225-260.
    Pubmed CrossRef
  2. Wang Y, Tao F, Xu P. 2014. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 289: 6080-6090.
    Pubmed CrossRef Pubmed Central
  3. Beauchamp J, Gross PG, Vieille C. 2014. Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone. Appl. Microbiol. Biotechnol. 98: 7039-7050.
    Pubmed CrossRef
  4. Hekmat D, Bauer R, Fricke J. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116.
    Pubmed CrossRef
  5. Weckbecker A, Groger H, Hummel W. 2010. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 120: 195-242.
    Pubmed CrossRef
  6. Tao F, Tai C, Liu Z, Wang A, Wang Y, Li L, et al. 2012. Genome sequence of Klebsiella pneumoniae LZ, a potential platform strain for 1,3-propanediol production. J. Bacteriol. 194: 4457-4458.
    Pubmed CrossRef Pubmed Central
  7. Petrov K, Petrova P. 2009. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl. Microbiol. Biotechnol. 84: 659-665.
    Pubmed CrossRef
  8. Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Joe MH, et al. 2011. Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour. Technol. 102: 3918-3922.
    Pubmed CrossRef
  9. Liu H, Xu Y, Zheng Z, Liu D. 2010. 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol. J. 5: 1137-1148.
    Pubmed CrossRef
  10. Wang L, Wang J, Shi H, Gu H, Zhang Y, Li X, et al. 2016. Characterization of glycerol dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG motif identification. J. Microbiol. Biotechnol. 26: 1077-1086.
    Pubmed CrossRef
  11. Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, et al. 2001. Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9: 789-802.
    CrossRef
  12. Musille P, Ortlund E. 2014. Structure of glycerol dehydrogenase from Serratia. Acta Crystallogr. F Struct. Biol. Commun. 70: 166-172.
    Pubmed CrossRef Pubmed Central
  13. Rossmann MG, Moras D, Olsen KW. 1974. Chemical and biological evolution of nucleotide-binding protein. Nature 250: 194-199.
    Pubmed CrossRef
  14. Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, et al. 2002. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99: 11664-11669.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd