전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Kaden R, Ferrari S, Jinnerot T, Lindberg M, Wahab T, Lavander M. 2018. Brucella abortus: determination of survival times and evaluation of methods for detection in several matrices. BMC Infect. Dis. 18: 259.
    Pubmed PMC CrossRef
  2. Khan MZ, Zahoor M. 2018. An overview of brucellosis in cattle and humans, and its serological and molecular diagnosis in control strategies. Trop. Med. Infect. Dis. 3: 65.
    Pubmed PMC CrossRef
  3. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, et al. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2: e631.
    Pubmed PMC CrossRef
  4. Meng F, Pan X, Tong W. 2018. Rifampin versus streptomycin for brucellosis treatment in humans: a meta-analysis of randomized controlled trials. PLoS One 13: e0191993.
    Pubmed PMC CrossRef
  5. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11: 1645-1658.
    Pubmed PMC CrossRef
  6. Nath R, Das S, Sarma S, Devi M. 2014. Comparison of blood profiles between healthy and Brucella affected cattle. Vet. World. 7: 668670.
    CrossRef
  7. Ali AH. 2009. The effect of brucellosis on lipid profile and oxidant-antioxidants status. Iraqi. J. Pharm. Sci. 18: 26-31.
  8. Lin CJ, Lai CK, Kao MC, Wu LT, Lo UG, Lin LC, et al. 2015. Impact of cholesterol on disease progression. Biomedicine (Taipei) 5: 7.
    Pubmed PMC CrossRef
  9. Paniagua-Perez R, Madrigal-Bujaidar E, Reyes-Cadena S, Molina-Jasso D, Perez Gallaga J, Silva-Miranda A, et al. 2005. Genotoxic and cytotoxic studies of beta-sitosterol and pteropodine in mouse. J. Biomed. Biotechnol. 2005: 242-247.
    Pubmed PMC CrossRef
  10. Ododo MM, Choudhury MK, Dekebo AH. 2016. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springerplus 5: 12210.
    Pubmed PMC CrossRef
  11. Reyes AWB, Hop HT, Arayan LT, Huy TXN, Park SJ, Kim KD, et al. 2017. The host immune enhancing agent Korean red ginseng oil successfully attenuates Brucella abortus infection in a murine model. J. Ethnopharmacol. 198: 5-14.
    Pubmed CrossRef
  12. Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min WG, Lee HJ, et al. 2017. Activation of NF-κB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW264.7 cells. Front. Cell. Infect. Microbiol. 7: 437.
    Pubmed PMC CrossRef
  13. Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83.
    Pubmed PMC CrossRef
  14. Grillo MJ, Blasco JM, Gorvel JP, Moriyón I, Moreno E. 2012. What have we learned from brucellosis in the mouse model. Vet. Res. 43:29.
    Pubmed PMC CrossRef
  15. Wang Y, Li Y, Li H, Song H, Zhai N, Lou L, et al. 2017. Brucella dysregulates monocytes and inhibits macrophage polarization through LC3-dependent autophagy. Front. Immunol. 8: 691.
    Pubmed PMC CrossRef
  16. Celli J. 2006. Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 157: 93-98.
    Pubmed CrossRef
  17. von Bargen K, Gorvel JP, Salcedo SP. 2012. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 36:533-562.
    Pubmed CrossRef
  18. Boukes GJ, Van de Venter M. 2016. In vitro modulation of the innate immune response and phagocytosis by three Hypoxis spp. and their phytosterol. S. Afr. J. Bot. 102: 120-126.
    CrossRef
  19. Wang M, Qureshi N, Soeurt N, Splitter G. 2001. High level of nitric oxide production decrease early but increase late survival of Brucella abortus in macrophages. Microb. Pathog. 31: 221-230.
    Pubmed CrossRef
  20. Barquero-Calvo E, Mora-Cartin R, Arce-Gorvel V, de Diego JL, Chacon-Diaz C, Chaves-Olarte E, et al. Brucella induces the premature death of human neutrophils through the actin of its lipopolysaccharide. PLoS Pathog. 11: e1004853.
    Pubmed PMC CrossRef
  21. Gruenheid S, Finlay BB. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422: 775-781.
    Pubmed CrossRef
  22. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P. 2010. β- sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res. 54: 551-558.
    Pubmed CrossRef
  23. Fahy DM, O’Callaghan YC, O’Brien NM. 2004. Phytosterols: lack of cytotoxicity but interference with beta-carotene uptake in Caco2 cellls in culture. Food Addit. Contam. 21: 42-51.
    Pubmed CrossRef
  24. Sharmila R, Sindhu G. 2017. Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, c-fos, c-jun, and endothelial growth factor receptor. Pharmacogn. Mag. 13: 95-101.
  25. Tripathi P, Tripathi P, Kashyap L, Singh V. 2007. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 51: 443-452.
    Pubmed CrossRef
  26. Lampronti I, Dechecchi MC, Rimessi A, Bezzerri V, Nicolis E, Guerrini A, et al. 2017. β-sitosterol reduces the expression of chemotactic cytokine genes in cystic fibrosis bronchial epithelial cells. Front. Pharmacol. 8: 236.
    Pubmed PMC CrossRef
  27. Li H, Zhao X, Wang J, Dong Y, Meng S, Li R, et al. 2015. β-sitosterol interacts with pneumolysin to prevent Streptococcus pneumonia infection. Sci. Rep. 5: 17668.
    Pubmed PMC CrossRef
  28. Iyer SS, Cheng G. 2012. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32: 23-63.
    Pubmed CrossRef
  29. Han NR, Kim HM, Jeong HJ. 2014. The β-sitosterol attenuates atopic dermatitis-like skin lesions through down-regulation of TSLP. Expt. Biol. Med. (Maywood) 239: 454-464.
    Pubmed CrossRef
  30. Kim SJ. 2017. The ameliorative effect of β-sitosterol on DNCB-induced atopic dermatitis in mice. Biomed. Sci. Lett. 23: 303-309.
    CrossRef
  31. Zhan Y, Cheers C. 1993. Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect. Immun. 61: 48994901.
    Pubmed PMC CrossRef
  32. Macedo GC, Magnani DM, Carvalho NB, Bruna-Romero O, Gazzinelli RT, Oliveira SC. 2008. Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection. J. Immunol. 180: 10801087.
    Pubmed CrossRef
  33. Guler R, Parihar SP, Spohn G, Johansen P, Brombacher F, Bachmann MF. 2011. Blocking IL-1α but not IL-1β increases susceptibility to chronic Mycobacterium tuberculosis infection in mice. Vaccine 29: 1339-1346.
    Pubmed CrossRef
  34. Skendros P, Boura P. 2013. Immunity to brucellosis. Rev. Sci. Tech. 32: 137-147.
    Pubmed CrossRef
  35. Corsetti PP, de Almeida LA, Carvalho NB, Azevedo V, Silva TMA, Teixeira HC, et al. 2013. Lack of endogenous IL-10 enhances production of proinflammatory cytokines and leads to Brucella abortus clearance in mice. PLoS One 8: e74729.
    Pubmed PMC CrossRef
  36. Picka MCM, Calvi SA, Lima CRG, Santos IAT, Marcondes-Machado J. 2005. Measurement of IL-10 serum levels in BALB/c mice treated with beta-1,3 polyglucose or sulfadiazine and acutely infected by Toxoplasma gondii. J. Venom. Anim. Toxins Incl. Trop. Dis. 11: 542.
    CrossRef

Related articles in JMB

More Related Articles