Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-11: 1760~1768

AuthorSanath Kondaveeti, Raviteja Pagolu, Sanjay K. S. Patel, Ashok Kumar, Aarti Bisht, Devashish Das, Vipin Chandra Kalia, In-Won Kim, Jung-Kul Lee
Place of dutyDepartment of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
TitleBioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-11
AbstractThe use of lignocellulosic biomass such as rice straw can help subsidize the cost of producing value-added chemicals. However, inhibitory compounds, such as phenolics, produced during the pre-treatment of biomass, hamper the saccharification process. Laccase and electrochemical stimuli are both well known to reduce phenolic compounds. Therefore, in this study, we implemented a bioelectrochemical detoxification system (BEDS), a consolidated electrochemical and enzymatic process involving laccase, to enhance the detoxification of phenolics, and thus achieve a higher saccharification efficiency. Saccharification of pretreated rice straw using BEDS at 1.5 V showed 90% phenolic reduction (Phr), thereby resulting in a maximum saccharification yield of 85%. In addition, the specific power consumption when using BEDS (2.2 W/Kg Phr) was noted to be 24% lower than by the electrochemical process alone (2.89 W/kg Phr). To the best of our knowledge, this is the first study to implement BEDS for reduction of phenolic compounds in pretreated biomass.
Full-Text
Key_wordVoltage supplementation, bioelectrochemical detoxification, phenolic compounds, rice straw, hydrolysis
References
  1. Singh RK, Singh R, Sivakumar D, Kondaveeti S, Kim T, Li J, et al. 2018. Insights into cell-Free conversion of CO2 to chemicals by a multienzyme cascade reaction. ACS Catal. 12: 11085-11093.
    CrossRef
  2. Jin W, Lin H, Gao H, Guo Z, Li J, Xu Q, et al. 2019. N-AcylHomoserine lactone quorum sensing switch from acidogenesis to solventogenesis during the fermentation process in serratia marcescens MG1. J. Microbiol. Biotechnol. 29: 596-606.
    Pubmed CrossRef
  3. Otari S, Pawar S, Patel SK, Singh RK, Kim S-Y, Lee JH, et al. 2017. Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J. Microbiol. Biotechnol. 27: 731-738.
    Pubmed CrossRef
  4. Guo Z, Zhao X, He Y, Yang T, Gao H, Li G, et al. 2017. Efficient (3R)-acetoin production from meso-2, 3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2, 3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin. J. Microbiol. Biotechnol. 27: 92-100.
    Pubmed CrossRef
  5. Zhu S, Huang W, Huang W, Wang K, Chen Q, Wu Y. 2015. Pretreatment of rice straw for ethanol production by a twostep process using dilute sulfuric acid and sulfomethylation reagent. Appl. Energy 154: 190-196.
    CrossRef
  6. Karimi K, Emtiazi G, Taherzadeh MJ. 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40: 138-144.
    CrossRef
  7. Kumar A, Patel SK, Mardan B, Pagolu R, Lestari R, Jeong SH, et al. 2018. Immobilization of xylanase using a proteininorganic hybrid system. J. Microbiol. Biotechnol. 28: 638-644.
  8. Shobana S, Kumar G, Bakonyi P, Saratale GD, Al-Muhtaseb AaH, Nemestóthy N, et al. 2017. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production. Bioresour. Technol. 244: 1341-1348.
    Pubmed CrossRef
  9. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. 2011. Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48: 54-60.
    Pubmed CrossRef
  10. Lee KM, Min K, Choi O, Kim K-Y, Woo HM, Kim Y, et al. 2015. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour. Technol. 187: 228-234.
    Pubmed CrossRef
  11. Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. 2015. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit. Rev. Biotechnol. 35: 342-354.
    Pubmed CrossRef
  12. Jönsson LJ, Alriksson B, Nilvebrant N-O. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6: 16.
    Pubmed CrossRef Pubmed Central
  13. Moreno AD, Ibarra D, Fernández JL, Ballesteros M. 2012. Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour. Technol. 106: 101-109.
    Pubmed CrossRef
  14. Fillat Ú, Ibarra D, Eugenio ME, Moreno AD, Tomás-Pejó E, Martín-Sampedro R. 2017. Laccases as a potential tool for the efficient conversion of lignocellulosic biomass: a review. Fermentation 3(2): 17.
    CrossRef
  15. Kalyani D, Tiwari MK, Li J, Kim SC, Kalia VC, Kang YC, et al. 2015. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and Its application in the hydrolysis of biomass. PLoS One 10: e0120156.
    Pubmed CrossRef Pubmed Central
  16. Patel SKS, Choi SH, Kang YC, Lee J-K. 2016. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk–shell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738.
    Pubmed CrossRef
  17. Sharifian H, Kirk DW. 1986. Electrochemical oxidation of phenol. J. Electrochem. Soc. 133: 921-924.
    CrossRef
  18. Enache TA, Oliveira-Brett AM. 2011. Phenol and parasubstituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 655: 9-16.
    CrossRef
  19. Kumar V, Patel SKS, Gupta RK, Otari SV, Gao H, Lee J-K, et al. 2019. Enhanced saccharification and fermentation of rice straw by reducing the c oncentration of phenolic compounds using an immobilized enzyme cocktail. Biotechnol. J. 14(6): e1800468.
    Pubmed CrossRef
  20. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    Pubmed CrossRef
  21. Dhiman SS, Haw J-R, Kalyani D, Kalia VC, Kang YC, Lee J-K. 2015. Simultaneous pretreatment and saccharification: Green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour. Technol. 179: 50-57.
    Pubmed CrossRef
  22. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. 2010. Inhibition of cellulases by phenols. Enzyme Microb. Technol. 46: 170-176.
    CrossRef
  23. Singh RK, Tiwari MK, Singh R, Lee J-K. 2013. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci. 14: 1232-1277.
    Pubmed CrossRef Pubmed Central
  24. Shin K, Kim YH, Jeya M, Lee J-K, Kim Y-S. 2010. Purification and characterization of a thermostable cellobiohydrolase from Fomitopsis pinicola. J. Microbiol Biotechnol. 20: 1681-1688.
    Pubmed CrossRef
  25. Jeya M, Lee J-K. 2013. Optimization of β-glucosidase production by a strain of Stereum hirsutum and its application in enzymatic saccharification. J. Microbiol. Biotechnol. 23: 351-356.
    Pubmed CrossRef
  26. Lee KM, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, et al. 2 012. Enhanced enzymatic hydrolysis of r ice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour. Technol. 123: 636-645.
    Pubmed CrossRef
  27. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  28. Jin S, Chen H. 2006. Structural properties and enzymatic hydrolysis of rice straw. Process Biochem. 41: 1261-1264.
    CrossRef
  29. Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A, Ruzgas T, et al. 2005. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67: 115-124.
    Pubmed CrossRef
  30. Borole AP, Mielenz JR, Vishnivetskaya TA, Hamilton CY. 2009. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2: 7.
    Pubmed CrossRef Pubmed Central
  31. Chu YY, Qian Y, Wang WJ, Deng XL. 2012. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. J. Hazard. Mater. 199-200: 179-185.
    Pubmed CrossRef
  32. Kuk SK, Ham Y, Gopinath K, Boonmongkolras P, Lee Y, Lee YW, et al. 2019. Continuous 3D Titanium Nitride Nanoshell Structure for Solar-Driven Unbiased Biocatalytic CO2 Reduction. Adv. Energy Mater. 9: 1900029.
    CrossRef
  33. Kondaveeti S, Abu-Reesh IM, Mohanakrishna G, Pant D, He Z. 2019. Utilization of residual organics of Labaneh whey for renewable energy generation through bioelectrochemical processes: Strategies for enhanced substrate conversion and energy generation. Bioresour. Technol. 286: 121409.
    Pubmed CrossRef
  34. Lee N-K, Paik H-D. 2017. Bioconversion using lactic acid bacteria: ginsenosides, GABA, and phenolic compounds. J. Microbiol. Biotechnol. 27: 869-877.
    Pubmed CrossRef
  35. Dahili LA, Nagy E, Feczko T. 2017. 2, 4-Dichlorophenol enzymatic removal and its kinetic study using horseradish peroxidase crosslinked to nano spray-dried poly (lactic-coglycolic acid) fine particles. J. Microbiol. Biotechnol. 27: 768-774.
    Pubmed CrossRef
  36. Lee J-S, Hong S-K, Lee C-R, Nam S-W, Jeon S-J, Kim Y-H. 2019. Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast. J. Microbiol. Biotechnol. 29: 625-632.
    Pubmed CrossRef
  37. Sunwoo IY, Nguyen TH, Sukwong P, Jeong G-T, Kim S-K. 2018. Enhancement of ethanol production via hyper thermal acid hydrolysis and co-fermentation using waste seaweed from Gwangalli Beach, Busan, Korea. J. Microbiol. Biotechnol. 28: 401-408.
    Pubmed CrossRef
  38. Lee W-H, Jin Y-S. 2017. Evaluation of ethanol production activity by engineered Saccharomyces cerevisiae fermenting cellobiose through the phosphorolytic pathway in simultaneous saccharification and fermentation of cellulose. J. Microbiol. Biotechnol. 27: 1649-1656.
    Pubmed CrossRef
  39. Zou Z, Zhao Y, Zhang T, Xu J, He A, Deng Y. 2018. Efficient isolation and characterization of a cellulase hyperproducing mutant strain of Trichoderma reesei. J. Microbiol. Biotechnol. 28: 1473-1481.
    Pubmed CrossRef
  40. Yang F, Gong Y, Liu G, Zhao S, Wang J. 2015. Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression. J. Microbiol. Biotechnol. 25: 1101-1107.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd