Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 1904~1915

AuthorDong-Hyun Jung, Ga-Young Kim, In-Young Kim, Dong-Ho Seo, Young-Do Nam, Hee Kang, Youngju Song, Cheon-Seok Park
Place of dutyMicrobial Research Department, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea,Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
TitleBifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
AbstractResistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.
Full-Text
Key_wordBifidobacterium adolescentis, human intestinal bacteria, immunomodulatory effect, probiotics, resistant starch
References
  1. Salyers AA, Leedle JA. 1983. Carbohydrate metabolism in the human colon, pp. 129-146. In Hentges D (ed.), Human intestinal microflora in health and disease, 1st Ed. Elsevier Academic Press, New York.
    CrossRef
  2. Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, et al. 2011. Resistant starch as prebiotic: a review. Starch-Stärke. 63: 406-415.
    CrossRef
  3. Bird A, Conlon M, Christophersen C, Topping D. 2010. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Mirbobes 1:423-431.
    Pubmed CrossRef
  4. Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, et al. 1998. Starch production and industrial use. J. Sci. Food Agric. 77: 289-311.
    CrossRef
  5. Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81: 219-231.
    CrossRef
  6. Imberty A, Buléon A, Tran V, Péerez S. 1991. Recent advances in knowledge of starch structure. Starch-Stärke 43: 375-384.
    CrossRef
  7. Raigond P, Ezekiel R, Raigond B. 2015. Resistant starch in food: a review. J. Sci. Food Agric. 95: 1968-1978.
    Pubmed CrossRef
  8. Bello-Perez LA, Paredes-López O. 2009. Starches of some food crops, changes during processing and their nutraceutical potential. Food Eng. Rev. 1: 50.
    CrossRef
  9. Benmoussa M, Moldenhauer KA, Hamaker BR. 2007. Rice amylopectin fine structure variability affects starch digestion properties. J. Agric. Food Chem. 55: 1475-1479.
    Pubmed CrossRef
  10. Sang Y, Bean S, Seib PA, Pedersen J, Shi Y-C. 2008. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 56: 6680-6685.
    Pubmed CrossRef
  11. Themeier H, Hollmann J, Neese U, Lindhauer M. 2005. Structural and morphological factors influencing the quantification of resistant starch II in starches of different botanical origin. Carbohydr. Polym. 61: 72-79.
    CrossRef
  12. Heitmann T, Wenzig E, Mersmann A. 1997. Characterization of three different potato starches and kinetics of their enzymatic hydrolysis by an α-amylase. Enzyme Microb. Technol. 20: 259-267.
    CrossRef
  13. Kong BW, Kim JI, Kim MJ, Kim JC. 2003. Porcine pancreatic α-amylase hydrolysis of native starch granules as a function of granule surface area. Biotechnol. Prog. 19: 1162-1166.
    Pubmed CrossRef
  14. Tester RF, Karkalas J, Qi X. 2004. Starch structure and digestibility enzyme-substrate relationship. Worlds Poult. Sci. J. 60: 186-195.
    CrossRef
  15. Božić N, Lončar N, Slavić MŠ, Vujčić Z. 2017. Raw starch degrading α-amylases: an unsolved riddle. Amylase 1: 12-25.
    CrossRef
  16. Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, et al. 2010. Recent advances in microbial raw starch degrading enzymes. Appl. Biochem. Biotechnol. 160: 988-1003.
    Pubmed CrossRef
  17. Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6: 1535-1543.
    Pubmed CrossRef Pubmed Central
  18. Jung DH, Seo DH, Kim GY, Nam YD, Song EJ, Yoon S, et al. 2018. The effect of resistant starch (RS) on the bovine rumen microflora and isolation of RS-degrading bacteria. Appl. Microbiol. Biotechnol. 102: 4927-4936.
    Pubmed CrossRef
  19. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7:203-214.
    Pubmed CrossRef
  20. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. 2005. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72.
    Pubmed CrossRef
  21. DuBois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
    CrossRef
  22. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  23. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 2009. Complex glycan catabolism by the human gut microbiota:the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284: 2467324677.
    Pubmed CrossRef Pubmed Central
  24. Sun Y, Sun T, Wang F, Zhang J, Li C, Chen X, et al. 2013. A polysaccharide from the fungi of Huaier exhibits anti-tumor potential and immunomodulatory effects. Carbohydr. Polym. 92: 577-582.
    Pubmed CrossRef
  25. Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916.
    Pubmed CrossRef
  26. Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, et al. 2004. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin. Diagn. Lab. Immunol. 11: 686-690.
    Pubmed CrossRef Pubmed Central
  27. Rodríguez-Sanoja R, Oviedo N, Sanchez S. 2005. Microbial starch-binding domain. Curr. Opin. Microbiol. 8: 260-267.
    Pubmed CrossRef
  28. Peng H, Zheng Y, Chen M, Wang Y, Xiao Y, Gao Y. 2014. A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 588: 1161-1167.
    Pubmed CrossRef
  29. Guillén D, Sánchez S, Rodríguez-Sanoja R. 2010. Carbohydratebinding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85: 1241-1249.
    Pubmed CrossRef
  30. Jiang S, Wells CD, Roach PJ. 2011. Starch-binding domaincontaining protein 1 (Stbd1) and glycogen metabolism:identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413: 420-425.
    Pubmed CrossRef Pubmed Central
  31. D’Argenio V, Salvatore F. 2015. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 451:97-102.
    Pubmed CrossRef
  32. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, et al. 2015. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol. Microbiol. 95: 209-230.
    Pubmed CrossRef Pubmed Central
  33. Ze X, David YB, Laverde-Gomez JA, Dassa B, Sheridan PO, Duncan SH, et al. 2015. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio. 6: e01058-01015.
    Pubmed CrossRef Pubmed Central
  34. Shin HS, Eom JE, Shin DU, Yeon SH, Lim SI, Lee SY. 2018. Preventive effects of a probiotic mixture in an ovalbumininduced food allergy model. J. Microbiol. Biotechnol. 28: 65-76.
    Pubmed CrossRef
  35. Sim I, Park KT, Kwon G, Koh JH, Lim YH. 2018. Probiotic potential of Enterococcus faecium isolated from chicken cecum with immunomodulating activity and promoting longevity in Caenorhabditis elegans. J. Microbiol. Biotechnol. 28: 883-892.
    Pubmed CrossRef
  36. Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73:444s-450s.
    Pubmed CrossRef
  37. Medina M, Izquierdo E, Ennahar S, Sanz Y. 2007. Differential immunomodulatory properties of Bifidobacterium logum strains:relevance to probiotic selection and clinical applications. Clin. Exp. Immunol. 150: 531-538.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd