Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 1925~1930

AuthorMibang Kim, Dong-Ho Seo, Young-Seo Park, In-Tae Cha, Myung-Ji Seo
Place of dutyDepartment of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
TitleIsolation of Lactobacillus plantarum subsp. plantarum Producing C30 Carotenoid 4,4’-Diaponeurosporene and the Assessment of Its Antioxidant Activity
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
AbstractCarotenoids are organic pigments with antioxidant properties and are widespread in nature. Here, we isolated five microbes, each forming yellow-colored colonies and harboring C30 carotenoid biosynthetic genes (crtM and crtN). Thereafter, Lactobacillus plantarum subsp. plantarum KCCP11226, which showed the highest carotenoid production, was finally selected and the produced pigment was identified as C30 carotenoid 4,4’-diaponeurosporene. This strain exhibited the highest survival rate under oxidative stress and its carotenoid production was also enhanced after exposure to 7 mM H2O2. Moreover, it showed the highest ability to scavenge DPPH free radical. Our results suggested that L. plantarum subsp. plantarum KCCP11226, which produces 4,4’-diaponeurosporene as a natural antioxidant, may be a functional probiotic.
Full-Text
Supplemental Data
Key_wordLactobacillus plantarum subsp. plantarum, carotenoid, 4,4′-diaponeurosporene, antioxidant, isolation
References
  1. Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: a colourful tale. Annu. Rev. Microbiol. 51: 629-659.
    Pubmed CrossRef
  2. Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488.
    Pubmed CrossRef Pubmed Central
  3. Jaswir I, Noviendri D, Hasrini RF, Octavianti F. 2011. Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5: 7119-7131.
    CrossRef
  4. Ducrey Sanpietro LM, Kula MR. 1998. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14: 1007-1016.
    CrossRef
  5. Del Campo JA, Moreno J, Rodriguez H, Angeles Vargas M, Rivas Joaquin, Guerrero MG. 2000. Carotenoid content of chlorophycean microalgae_factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 76: 51-59.
    CrossRef
  6. Ninet L, Renaut J, Tissier R. 1969. Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol. Bioeng. 11: 1195-1210.
    CrossRef
  7. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919.
    Pubmed CrossRef
  8. Miyoshi A, Rochat T, Gratadoux JJ, Loir YL, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.
  9. Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, et al. 2007. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 6: 29.
    Pubmed CrossRef Pubmed Central
  10. Hagi T, Kobayashi M, Kawanoto S, Shima J, Nomura M. 2013. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J. Appl. Microbiol. 114: 1763-1771.
    Pubmed CrossRef
  11. Young AJ, Lowe GW. 2001. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385: 20-27.
    Pubmed CrossRef
  12. Garrido-Fernandez J, Maldonado-Barragan A, CaballeroGuerrero B, Homero-Mendez D, Ruiz-Barba JL. 2010. Carotenoid produxtion in Lactobacillus plantarum. Int. J. Food Microbiol. 140: 34-39.
    Pubmed CrossRef
  13. Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot JP, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry: an efficient way to identify carotenoid producing lactic acid bacteria. Syst. Appl. Microbiol. 39: 115-121.
    Pubmed CrossRef
  14. Ben-Amotz A, Avron M. 1983. On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant. Physiol. 72: 593-597.
    Pubmed CrossRef Pubmed Central
  15. Hagi T, Kobayashi M, Nomura M. 2014. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiol. Lett. 350: 223-230.
    Pubmed CrossRef
  16. Bruno-Bárcena JM, Azcárate-Peril MA, Hassan HM. 2010. Role of antioxidant enzymes in bacterial resistance to organic acids. Appl. Environ. Microbiol. 76: 2747-2753.
    Pubmed CrossRef Pubmed Central
  17. Desmond C, Fitzgerald GF, Stanton C, Ross RP. 2004. Improved stress tolerance of Gro ESL over producing Lactococcus lactis and probiotic Lactobacillus paracasei N F BC 338. Appl. Environ. Microbiol. 70: 5929-5936.
    Pubmed CrossRef Pubmed Central
  18. Kimoto-Nira H, Kobayashi M, Nomura M, Sasaki K, Suzuki C. 2009. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media. Int. J. Food Microbiol. 131: 183-188.
    Pubmed CrossRef
  19. Miyoshi A, Rochat T, Gratadoux JJ, Loir YL, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.
  20. Neviani E, Carminati D, Veaux M, Hermier J, Giraffa G. 1991. Characterization of Lactobacillus helveticus strains resistant to lysozyme. Lait 71: 65-73.
    CrossRef
  21. Hagi T, Kobayashi M, Nomura M. 2014. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus. FEMS Microbiol. Lett. 362: 223-230.
    Pubmed CrossRef
  22. Lim HS, Cha I, Roh SW, Shin H, Seo M. 2017. Enhanced producion of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a korean fermented food. J. Microbiol. Biotechnol. 27: 450-459.
    Pubmed CrossRef
  23. Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4’-diaponeurosporene of Staphylococcus aureus. J. Biotechnol. 176: 7719-7726.
    Pubmed CrossRef Pubmed Central
  24. Kobayashi M, Kakizono T, Nagai S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873.
  25. Clauditz A, Resch A, Wieland KP, Peschel A, Götz F. 2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74: 4950-4953.
    Pubmed CrossRef Pubmed Central
  26. Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, et al. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75: 3296-3306.
    CrossRef
  27. Marova I, Carnecka M, Halienova A, Breierova E, Koci R. 2010. Production of carotenoid-/ergosterol-supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol. Biotechnol. 48: 56-61.
  28. Jeong JC, Lee IY, Kim SW, Park YH. 1999. Stimulation of β-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotechnol. Lett. 21: 683-686.
  29. Reyes LH, Gomez JM, Kao KC. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21: 26-33.
    Pubmed CrossRef
  30. Bouayed J, Bohn T. 2010. Exogenous antioxidants-doubledeged swords in cellular redox state. Oxidative Med. Cell. Longev. 3: 228-237.
    Pubmed CrossRef Pubmed Central
  31. Jeong S, Kang CK, Choi YJ. 2018. Metabolic engineering of Deinococcus radiodurans for the production of phytoene. J. Microbiol. Biotechnol. 28: 1691-1699.
    Pubmed CrossRef
  32. Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, et al. 2014. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front. Microbiol. 5: 100.
    Pubmed CrossRef Pubmed Central
  33. Manimala MRA, Murugesan R. 2014. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. Isolated from natural source. J. Appl. Nat. Sci. 6: 649-653.
    CrossRef
  34. Chooruk A, Piwat S, Teanpaisan R. 2017. Antioxidant activity of various oral Lactobacillus strains. J. Appl. Microbiol. 123: 271-279.
    Pubmed CrossRef
  35. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidnat activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275.
    Pubmed CrossRef
  36. Suzuki Y, Kosaka M, Shindo K, Kawasumi T, Kimoto-Nira H, Suzuki C. 2013. Identification of antioxidants produced by Lactobacillus plantaum. Biosci. Biotechnol. Biochem. 77: 1299-1302.
    Pubmed CrossRef
  37. Steiger S, Perez-Fons L, Fraser PD, Sandmann G. 2012. Biosynthesis of a novel C30 carotenoid in Bacillus firmus isolates. J. Appl. Microbiol. 113: 888-895.
    Pubmed CrossRef
  38. Wu Y, Ma Y, Li L, Yang X. 2018. Preparation and antioxidant activities in vitro of a designed antioxidant peptide from pinctada fucata by recombinant Escherichia coli. J. Microbiol. Biotechnol. 28: 1-11.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd