Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-10: 1656~1664

AuthorHyeok-Won Lee, Jung-Ho Park, Hee-Seok Lee, Wonho Choi, Sung-Hwa Seo, Irika Devi Anggraini, Eui-Sung Choi, Hong-Weon Lee
Place of dutyBiotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
TitleProduction of Bio-Based Isoprene by the Mevalonate Pathway Cassette in Ralstonia eutropha
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-10
AbstractIsoprene has the potential to replace some petroleum-based chemicals and can be produced through biological systems using renewable carbon sources. Ralstonia eutropha can produce value-added compounds, including intracellular polyhydroxyalkanoate (PHA) through fatty acid and lipid metabolism. In the present study, we engineered strains of R. eutropha H16 and examined the strains for isoprene production. We optimized codons of all the genes involved in isoprene synthesis by the mevalonate pathway and manipulated the promoter regions using pLac and pJ5 elements. Our results showed that isoprene productivity was higher using the J5 promoter (1.9 ± 0.24 μg/l) than when using the lac promoter (1.5 ± 0.2 μg/l). Additionally, the use of three J5 promoters was more efficient (3.8 ± 0.18 μg/l) for isoprene production than a one-promoter system, and could be scaled up to a 5-L batch-cultivation from a T-flask culture. Although the isoprene yield obtained in our study was insufficient to meet industrial demands, our study, for the first time, shows that R. eutropha can be modified for efficient isoprene production and lays the foundation for further optimization of the fermentation process.
Full-Text
Supplemental Data
Key_wordRalstonia eutropha, isoprene production, promoter, fermentation, MVA pathway
References
  1. Lee WH, Loo CY, Nomura CT, Sudesh K. 2008. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour. Technol. 99:6844-6851.
    Pubmed CrossRef
  2. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ. 2011. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77: 2847-2854.
    Pubmed CrossRef Pubmed Central
  3. Doi Y, Kawaguchi Y, Nakamura Y, Kunioka M. 1989. Nuclear magnetic resonance studies of poly(3-Hydroxybutyrate) and polyphosphate metabolism in alcaligenes eutrophus. Appl. Environ. Microbiol. 55: 2932-2938.
  4. Tanaka K, Ishizaki A, Kanamaru T, Kawano T. 1995. Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol. Bioeng. 45: 268-275.
    Pubmed CrossRef
  5. Park JM, Kim TY, Lee SY. 2011. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst. Biol. 5: 101.
    Pubmed CrossRef Pubmed Central
  6. Steinbuchel A, Fuchtenbusch B. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427.
    CrossRef
  7. Schubert P, Steinbuchel A, Schlegel HG. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-betahydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 170: 5837-5847.
    Pubmed CrossRef Pubmed Central
  8. Ishizaki A, Tanaka K, Taga N. 2001. Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl. Microbiol. Biotechnol. 57: 6-12.
  9. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, et al. 2012. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335: 1596.
    Pubmed CrossRef
  10. Grousseau E, Lu J, Gorret N, Guillouet SE, Sinskey AJ. 2014. Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl. Microbiol. Biotechnol. 98:4277-4290.
    Pubmed CrossRef
  11. Muller J, MacEachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh YC, et al. 2013. Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl. Environ. Microbiol. 79: 4433-4439.
    Pubmed CrossRef Pubmed Central
  12. Ward AMS-o-T, GB), Narayanaswamy, Ravichander (Bangalore, IN), Oprins, Arno Johannes Maria (Maastricht, NL), Rajagopalan, Vijayanand (Bangalore, IN), Schaerlaeckens, Egidius Jacoba Maria (Geleen, NL), Velasco Pelaez, Raul (Maastricht, NL). 2016. Process and installation for the conversion of crude oil to petrochemicals having an improved carbon-efficiency. United States patent application 20160369187.
  13. Lindberg P, Park S, Melis A. 2010. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12:70-79.
    Pubmed CrossRef
  14. Bentley FK, Zurbriggen A, Melis A. 2014. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant. 7: 71-86.
    Pubmed CrossRef
  15. Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430.
    Pubmed CrossRef
  16. Rohmer M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565-574.
    Pubmed CrossRef
  17. Lee HW, Park JH, Lee HS, Kim CS, Lee JG, Kim WK, et al. 2019. Development of novel on-line capillary gas chromatography-based analysis method for volatile organic compounds produced by aerobic fermentation. J. Biosci. Bioeng. 127: 121-127.
    Pubmed CrossRef
  18. Xue J, Ahring BK. 2011. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl. Environ. Microbiol. 77:2399-2405.
    Pubmed CrossRef Pubmed Central
  19. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, et al. 2014. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J. Biotechnol.186: 128-136.
    Pubmed CrossRef
  20. Eroglu E, Melis A. 2010. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour. Technol. 101: 2359-2366.
    Pubmed CrossRef
  21. Seemann M, Campos N, Rodriguez-Concepción M, Ibañez E, Duvold T, Tritsch D, et al. 2002. Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway:enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-2-methylbut-2-ene-1,4-diol. Tetrahedron. Lett. 43: 1413-1415.
    CrossRef
  22. Farmer WR, Liao JC. 2001. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol. Prog. 17: 57-61.
    Pubmed CrossRef
  23. Kajiwara S, Fraser PD, Kondo K, Misawa N. 1997. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324(Pt 2): 421-426.
    Pubmed CrossRef Pubmed Central
  24. Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. 2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796-802.
    Pubmed CrossRef
  25. Zurbriggen A, Kirst H, Melis A. 2012. Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria). BioEnergy Res. 5: 814-828.
    CrossRef
  26. Gruber S, Hagen J, Schwab H, Koefinger P. 2014. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. J. Biotechnol. 186: 74-82.
    Pubmed CrossRef
  27. Kim KJ, Kim HE, Lee KH, Han W, Yi MJ, Jeong J, et al. 2004. Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Sci. 13: 1698-1703.
    Pubmed CrossRef Pubmed Central
  28. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, 2nd, et al. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176.
    CrossRef
  29. Lee HW, Lee HS, Kim CS, Lee JG, Kim WK, Lee EG, et al. 2018. Enhancement of L-threonine production by controlling sequential carbon-nitrogen ratios during fermentation. J. Microbiol. Biotechnol. 28: 293-297.
    Pubmed CrossRef
  30. Wu H-S, Tsai M-J. 2004. Kinetics of tributyrin hydrolysis by lipase. Enzyme Microbial Technol. 35: 488-493.
    CrossRef
  31. Chaves JE, Melis A. 2018. Biotechnology of cyanobacterial isoprene production. Appl. Microbiol. Biotechnol. 102: 6451-6458.
    Pubmed CrossRef
  32. Diner BA, Fan J, Scotcher MC, Wells DH, Whited GM. 2018. Synthesis of heterologous mevalonic acid pathway enzymes in clostridium ljungdahlii for the conversion of fructose and of syngas to mevalonate and isoprene. Appl. Environ. Microbiol. 84. pii: e01723-17.
    Pubmed CrossRef Pubmed Central
  33. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G. 2010. Microbial PHA Production from Waste Raw Materials, pp. 85-119. In Chen GG-Q (ed.), Plastics from Bacteria: Natural Functions and Applications, Ed. Springer Berlin Heidelberg, Berlin, Heidelberg
    CrossRef
  34. Fukui T, Ohsawa K, Mifune J, Orita I, Nakamura S. 2011. Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Appl. Microbiol. Biotechnol. 89: 1527-1536.
    Pubmed CrossRef
  35. Alagesan S, Hanko EKR, Malys N, Ehsaan M, Winzer K, Minton NP. 2018. Functional genetic elements for controlling gene expression in Cupriavidus necator H16. Appl. Environ. Microbiol. 84. pii: e00878-18.
    Pubmed CrossRef Pubmed Central
  36. Batcha AF, Prasad DM, Khan MR, Abdullah H. 2014. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source. Bioprocess Biosyst. Eng. 37: 943-951.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd