Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-1: 44~53

AuthorMałgorzata Góral, Urszula Pankiewicz, Monika Sujka, Radosław Kowalski, Dariusz Góral, Katarzyna Kozłowicz
Place of dutyDepartment of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences Skromna 8; 20-704, Lublin, Poland
TitleInfluence of Pulsed Electric Field on Accumulation of Calcium in Lactobacillus rhamnosus B 442
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-1
AbstractCalcium is an element that performs many important functions in the human body. A study was conducted on the use of a pulsed electric field (PEF) to enrich cells of Lactobacillus rhamnosus B 442 in calcium ions. The highest concentration of calcium ions in bacterial cells (7.30 mg/g d.m.) was obtained at ion concentration of 200 µg/ml of medium and with the use of the following PEF parameters: field strength 3.0 kV/cm, exposure time 10 min, pulse width 75 ms and 20 h of culturing after which bacteria were treated with the field. Cell biomass varied in the range from 0.09 g/g d.m. to 0.252 g/g d.m., and the total number of bacteria ranged from 1010 CFU/ml to 1012 CFU/ml. Microscope photographs prove that calcium ions were situated within the cells of the bacteria, and electroporation contributed to an increase in the effectiveness of the ion bioaccumulation process. Samples containing calcium and subjected to electroporation displayed intensive fluorescence. The significance of this research was the possibility of using probiotic bacteria enriched with calcium ions for the production of functional food in subsequent studies.
Full-Text
Key_wordPEF, calcium, Lactobacillus rhamnosus
References
  1. Vavrusova M, Skibsted LH. 2014. Calcium nutrition. Bioavailability and fortification. LWT - Food Sci. Technol. 59: 1198-1204.
    CrossRef
  2. Vavrusova M, Danielsen BP, Garcia AC, Skibsted LH. 2018. Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability. J. Food Drug Anal. 26: 330-336.
    Pubmed CrossRef
  3. Titchenal CA, Dobbs J. 2007. A system to assess the quality of food sources of calcium. J. Food Compost Anal. 20: 717-724.
    CrossRef
  4. Camara-Martos F, Amaro-Lopez MA. 2002. Influence of dietary factors on calcium bioavailability. Biol. Trace Elem. Res. 89: 43-52.
    CrossRef
  5. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. 2011. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 342: d2040.
    Pubmed CrossRef Pubmed Central
  6. Reid IR, Bristow SM. 2016. Calcium fortified foods or supplements for older people?. Maturitas 85: 1-4.
    Pubmed CrossRef
  7. Rooney MR, Michos ED, Hootman KC, Harnack L, Lutsey PL. 2018. Trends in calcium supplementation, National Health and Nutrition Examination Survey (NHANES) 1999–2014. Bone 111: 23-27.
    Pubmed CrossRef Pubmed Central
  8. Cha JY, Cho YS. 2009. Determination of optimal conditions for zinc hyperaccumulation by Saccharomyces cerevisiae FF10. J. Korean Soc. Appl. Biol. Chem. 52: 227-233.
    CrossRef
  9. Toepfl S, Siemer C, Saldaña-Navarro G, Heinz V. 2014. Overview of pulsed electric fields processing for food. pp.93-114. In Emerging technologies for food processing. Academic Press.
    CrossRef
  10. Wang M S, Wang LH, Bekhit AEDA, Yang J, Hou ZP, Wang YZ, et al. 2018. A review of sublethal effects of pulsed electric field on cells in food processing. J. Food Eng. 223: 32-41.
    CrossRef
  11. Suchanek M, Olejniczak Z. 2018. Low field MRI study of the potato cell membrane electroporation by pulsed electric field.? J. Food Eng. 231: 54-60.
    CrossRef
  12. Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP. 2009. What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol. 41: 286-295.
    Pubmed CrossRef
  13. Dermol-Černe J, Miklavčič D, Reberšek M, Mekuč P, Bardet SM, Burke R, et al. 2018. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry 122: 103-114
    Pubmed CrossRef
  14. Teissie J, Golzio M , Rols M P. 2005. M echanisms of cell membrane electropermeabilization: a minireview of our present (lack of) knowledge. Biochim. Biophys. Acta 1724: 270-280.
    Pubmed CrossRef
  15. Vaessen EMJ, den Besten HMW, Patra T, van Mossevelde NTM, Boom RM, Schutyser MAI. 2018. Pulsed electric field for increasing intracellular trehalose content in Lactobacillus plantarum WCFS1. Innov. Food Sci. Emerg. Technol. 47: 256-261.
    CrossRef
  16. Kolosnjaj-Tabi J, Gibot L, Fourquaux I, Golzio M, Rols MP. 2018. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 138: 56-67.
    Pubmed CrossRef
  17. Phez E, Gibot L, Rols MP. 2016. How transient alterations of organelles in mammalian cells submitted to electric field may explain some aspects of gene electrotransfer process. Bioelectrochemistry 112: 166-172.
    Pubmed CrossRef
  18. Hristov K, Mangalanathan U, Casciola M, Pakhomova ON, Pakhomov AG. 2018. Expression of voltage-gated calcium channels augments cell susceptibility to membrane disruption by nanosecond pulsed electric field. Biochim. Biophys. Acta Biomembr. 1860: 2175-2183.
    Pubmed CrossRef
  19. Liu ZW, Zeng XA, Sun DW, Han Z. 2014. Effects of pulsed electric fields on the permeabilization of calcein-filled soybean lecithin vesicles. J. Food Eng. 131: 26-32.
    CrossRef
  20. Jorhem L, Engman J. 2000 Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. J. AOAC Int. 83: 1189-1203.
  21. American Public Health Association. 1993. Standard Methods for the Examination of Dairy Products, 16th ed. APHA, Washington, DC.
  22. Góral M, Pankiewicz U. 2017. Effect of pulsed electric fields (PEF) on Accumulation of magnesium in Lactobacillus rhamnosus B 442 Cells. J. Membr. Biol. 250: 565-572.
    Pubmed CrossRef Pubmed Central
  23. Góral M, Pankiewicz U, Sujka M, Kowalski R. 2019. Bioaccumulation of zinc ions in Lactobacillus rhamnosus B 442 cells under treatment of the culture with pulsed electric field. Eur. Food Res. Technol. 245: 817-824.
    CrossRef
  24. Marafon AP, Sumi A, Alcântara MR, Tamime AY, De Oliveira MN. 2011. Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. LWT - Food Sci. Technol. 44: 511-519.
    CrossRef
  25. Raso J, Frey W, Ferrari G, Pataro G, Knorr D, Teissie J, et al. 2016. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 37: 312-321
    CrossRef
  26. Silve A, Leray I, Poignard C, Mir LM. 2016. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses. Sci. Rep. 6: 19957.
    Pubmed CrossRef Pubmed Central
  27. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, et al. 2015. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 77: 773-798.
    CrossRef
  28. Pankiewicz U, Jamroz J. 2013. Application of pulsed electric field for enrichment of Saccharomyces cerevisiae cells with calcium ions. Ital. J. Food Sci. 25: 394-402.
  29. Roman J, Gniewosz M, Mantorska J. 2009. Comparison of magnesium binding, growth and acidifying properties of Lactobacillus brevis and Lactobacillus plantarum in an environment with elevated magnesium concentration. Acta Scient. Pol. Biotechnol. 8: 27-36 (in Polish).
  30. Mörschbächer AP, Dullius A, Dullius CH, Bandt CR, Kuhn D, Brietzke DT, et al. 2018. Assessment of selenium bioaccumulation in lactic acid bacteria. J. Dairy Sci. 101: 10626-10635.
    Pubmed CrossRef
  31. Mrvčić J, Prebeg T, Barišić L, Stanzer D, Bačun-Družina V, Stehlik-Tomas V. 2009. Zinc binding by lactic acid bacteria. Food Technol. Biotechnol. 47: 381-388.
  32. Mrvcic J, Stanzer D, Bacun-Druzina V, Stehlik-Tomas V. 2009. Copper binding by lactic acid bacteria (LAB). Biosci. Microflora. 28: 1-6.
    CrossRef
  33. Sánchez B, Delgado S, Blanco-Míguez A, Lourenço A, Gueimonde M, Margolles A. 2017. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61: 1600240.
    Pubmed CrossRef
  34. Ouwehand AC, Salminen S, Isolauri E. 2002. Probiotics: an overview of beneficial effects. In Siezen RJ, Kok J, Abee T, Schaafsma G. Eds., Lactic Acid Bacteria: Genetics, Metabolism and Applications. pp. 279-289. Springer Netherlands.
    Pubmed CrossRef
  35. Ziarno M, Wieclawski S. 2006. The effect of an addition of calcium lactate on the growth of lactic acid fermentation bacteria in MRS broth and in milk. Żywność Nauka Technologia Jakość 13: 110-119 (in Polish).
  36. Pirkul T, Temiz A, Erdem YK. 1997. Fortification of yoghurt with calcium salts and its effect on starter microorganisms and yoghurt quality. Int. Dairy J. 7: 547-552.
    CrossRef
  37. Seratlić S, Bugarski B, Nedović V, Radulović Z, Wadsö L, Dejmek P, Galindo FG. 2013. Behavior of the surviving population of Lactobacillus plantarum 564 upon the application of pulsed electric fields. Innov. Food Sci. Emerg. Technol. 17: 93-98.
    CrossRef
  38. Tang AL, Shah NP, Wilcox G, Walker KZ, Stojanovska L. 2007. Fermentation of calcium-fortified soymilk with Lactobacillus:effects on calcium solubility, isoflavone conversion, and production of organic acids. J. Food Sci. 72: M431-M436.
    Pubmed CrossRef
  39. Huang S, Yang Y, Fu N, Qin Q, Zhang L, Chen XD. 2014. Calcium-aggregated milk: a potential new option for improving the viability of lactic acid bacteria under heat stress. Food Bioproc. Tech. 7: 3147-3155.
    CrossRef
  40. Gurtler JB, Rivera RB, Zhang HQ, Geveke DJ. 2010. Selection of surrogate bacteria in place of E. coli O157: H7 and Salmonella Typhimurium for pulsed electric field treatment of orange juice. Int. J. Food Microbiol. 139: 1-8.
    Pubmed CrossRef
  41. Ulmer HM, Heinz V, Gänzle MG, Knorr D, Vogel RF. 2002. Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. J. Appl. Microbiol. 93: 326-335.
    Pubmed CrossRef
  42. Pankiewicz U, Jamroz J, Sujka M, Kowalski R. 2015. Visualization of calcium and zinc ions in Saccharomyces cerevisiae cells treated with PEFs (pulse electric fields) by laser confocal microscopy. Food Chem. 188: 16-23.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd