Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-11: 1830~1840

AuthorYu Rim Lee, Seunghee Bae, Ji Yea Kim, Junwoo Lee, Dae-Hyun Cho, Hee-Sik Kim, In-Sook An, Sungkwan An
Place of dutyResearch Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
TitleMonoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the Akt/β-Catenin Signaling Pathway
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-11
AbstractLoliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a threedimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/ β-catenin signaling pathways.
Full-Text
Supplemental Data
Key_wordLoliolide, hair follicle induction, dermal papilla, spheroids, AKT, migration
References
  1. Wang HD, Chen CC, Huynh P, Chang JS. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184: 355-362.
    Pubmed CrossRef
  2. Yang X, Kang MC, Lee KW, Kang SM, Lee WW, Jeon YJ. 2011. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum. Algae 26: 201-208.
    CrossRef
  3. Percot A, Yalcin A, Aysel V, Erdugan H, Dural B, Guven KC. 2009. Loliolide in marine algae. Nat. Prod. Res. 23: 460-465.
    Pubmed CrossRef
  4. Grabarczyk M, Wińska K, Mączka W, Potaniec B, Anioł M. 2015. Loliolide – the most ubiquitous lactone. Folia Biologica et Oecologica 11: 1-8.
    CrossRef
  5. Chung CY, Liu CH, Burnouf T, Wang GH, Chang SP, Jassey A, et al. 2016. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res. 130: 58-68.
    Pubmed CrossRef
  6. Park SH, Choi E, Kim S, Kim DS, Kim JH, Chang S, et al. 2018. Oxidative stress-protective and anti-melanogenic effects of loliolide and ethanol extract from fresh water green algae, Prasiola japonica. Int. J. Mol. Sci. 19. pii: E2825.
    Pubmed CrossRef Pubmed Central
  7. Yang HH, Hwangbo K, Zheng MS, Cho JH, Son JK, Kim HY, et al. 2015. Inhibitory effects of (-)-loliolide on cellular senescence in human dermal fibroblasts. Arch. Pharm. Res. 38: 876-884.
    Pubmed CrossRef
  8. Schneider MR, Schmidt-Ullrich R, Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol. 19: R132-142.
    Pubmed CrossRef
  9. Ohyama M. 2019. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm. Regen. 39: 4. doi: 10.1186/s41232-019-0093-1.
    Pubmed CrossRef Pubmed Central
  10. Botchkarev VA, Kishimoto J. 2003. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J. Investig. Dermatol. Symp. Proc. 8: 46-55.
    Pubmed CrossRef
  11. Sennett R, Rendl M. 2012. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23: 917-927.
    Pubmed CrossRef Pubmed Central
  12. Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, et al. 1999. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 205: 1-9.
    Pubmed CrossRef
  13. Yang CC, Cotsarelis G. 2010. Review of hair follicle dermal cells. J. Dermatol. Sci. 57: 2-11.
    Pubmed CrossRef Pubmed Central
  14. Kishimoto J, Burgeson RE, Morgan BA. 2000. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14: 1181-1185.
  15. Morgan BA. 2014. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect. Med. 4(7): a015180.
    Pubmed CrossRef Pubmed Central
  16. Messenger AG, Slater DN, Bleehen SS. 1986. Alopecia areata: alterations in the hair growth cycle and correlation with the follicular pathology. Br. J. Dermatol. 114: 337-347.
    Pubmed CrossRef
  17. Whiting DA. 2001. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J. Am. Acad. Dermatol. 45: S81-86.
    Pubmed CrossRef
  18. Madaan A, Verma R, Singh AT, Jaggi M. 2018. Review of hair follicle dermal papilla cells as in vitro screening model for hair growth. Int. J. Cosmet. Sci. 40: 429-450.
    Pubmed CrossRef
  19. Choi BY. 2018. Hair-growth potential of ginseng and its major metabolites: A Review on its molecular mechanisms. Int. J. Mol. Sci. 19(9). pii: E2703.
    Pubmed CrossRef Pubmed Central
  20. Han JH, Kwon OS, Chung JH, Cho KH, Eun HC, Kim KH. 2004. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34: 91-98.
    Pubmed CrossRef
  21. Madani S, Shapiro J. 2000. Alopecia areata update. J. Am. Acad. Dermatol. 42: 549-570.
    CrossRef
  22. Higgins CA, Chen JC, Cerise JE, Jahoda CA, Christiano AM. 2013. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA 110: 9679-19688.
    Pubmed CrossRef Pubmed Central
  23. Shimizu R, Okabe K, Kubota Y, Nakamura-Ishizu A, Nakajima H, Kishi K. 2011. Sphere formation restores and confers hair-inducing capacity in cultured mesenchymal cells. Exp. Dermatol. 20: 679-681.
    Pubmed CrossRef
  24. Choi YM, An S, Lee J, Lee JH, Lee JN, Kim YS, et al. 2 017 . Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells. Biosci. Biotechnol. Biochem. 81: 2323-2329.
    Pubmed CrossRef
  25. Lachgar S, Moukadiri H, Jonca F, Charveron M, Bouhaddioui N, Gall Y, et al. 1996. Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J. Invest. Dermatol. 106: 17-23.
    Pubmed CrossRef
  26. Hwang KA, Hwang YL, Lee MH, Kim NR, Roh SS, Lee Y, et al. 2012. Adenosine stimulates growth of dermal papilla and lengthens the anagen phase by increasing the cysteine level via fibroblast growth factors 2 and 7 in an organ culture of mouse vibrissae hair follicles. Int. J. Mol. Med. 29: 195-201.
  27. Manning BD, Cantley LC. 2007. AKT/PKB signaling:navigating downstream. Cell 129: 1261-1274.
    Pubmed CrossRef Pubmed Central
  28. Park SH, Kim DS, Kim S, Lorz LR, Choi E, Lim HY, et al. 2019. Loliolide presents antiapoptosis and antiscratching effects in human keratinocytes. Int. J. Mol. Sci. 20(3). pii:E651.
    Pubmed CrossRef Pubmed Central
  29. Andl T, Reddy ST, Gaddapara T, Millar SE. 2002. WNT signals are required for the initiation of hair follicle development. Dev. Cell. 2: 643-653.
    CrossRef
  30. Zhang H, Nan W, Wang S, Zhang T, Si H, Yang F, et al. 2016. Epidermal growth factor promotes proliferation and migration of follicular outer root sheath cells via Wnt/betacatenin signaling. Cell Physiol. Biochem. 39: 360-370.
    Pubmed CrossRef
  31. Driskell RR, Clavel C, Rendl M, Watt FM. 2011. Hair follicle dermal papilla cells at a glance. J. Cell Sci. 124: 1179-1182.
    Pubmed CrossRef Pubmed Central
  32. Shin H, Cho AR, Kim DY, Munkhbayer S, Choi SJ, Jang S, et al. 2016. Enhancement of human hair growth using Ecklonia cava polyphenols. Ann. Dermatol. 28: 15-21.
    Pubmed CrossRef Pubmed Central
  33. Kang JI, Kim SC, Han SC, Hong HJ, Jeon YJ, Kim B, et al. 2012. Hair-loss preventing effect of Grateloupia elliptica. Biomol. Ther. (Seoul) 20: 118-124.
    Pubmed CrossRef Pubmed Central
  34. Park KS, Park DH. 2016. Comparison of Saccharina japonica-Undaria pinnatifida mixture and minoxidil on hair growth promoting effect in mice. Arch. Plast. Surg. 43: 498-505.
    Pubmed CrossRef Pubmed Central
  35. Yoon HS, Kang JI, Kim SM, Ko A, Koh YS, Hyun JW, et al. 2019. Norgalanthamine stimulates proliferation of dermal papilla cells via anagen-activating signaling pathways. Biol. Pharm. Bull. 42: 139-143.
    Pubmed CrossRef
  36. Porter RM. 2003. Mouse models for human hair loss disorders. J. Anat. 202: 125-131.
    Pubmed CrossRef Pubmed Central
  37. Hggins CA, Richardson GD, Ferdinando D, Westgate GE, Jahoda CA. 2010. Modelling the hair follicle dermal papilla using spheroid cell cultures. Exp. Dermatol. 19: 546-548.
    Pubmed CrossRef
  38. Mali NM, Kim YH, Park JM, Kim D, Heo W, Dao BL, et al. 1993. Characterization of human dermal papilla cells in alginate spheres. Appl. Sci. 8(10).
    CrossRef
  39. Herman A, Herman AP. 2016. Mechanism of action of herbs and their active constituents used in hair loss treatment. Fitoterapia 114: 18-25.
    Pubmed CrossRef
  40. Cheon HI, Bae S, Ahn KJ. 2018. Flavonoid silibinin increases hair-inductive property via AKT and Wnt/β-catenin signaling activation in 3-dimensional-spheroid cultured human dermal papilla cells. J. Microbiol. Biotechnol. 29: 321-329.
    Pubmed CrossRef
  41. Botchkarev VA, Sharov AA. 2004. BMP signaling in the control of skin development and hair follicle growth. Differentiation 72: 512-526.
    Pubmed CrossRef
  42. Lee J, Tumbar T. 2012. Hairy tale of signaling in hair follicle development and cycling. Semin. Cell Dev. Biol. 23: 906-916.
    Pubmed CrossRef Pubmed Central
  43. Lin B, Miao Y, Wang J, Fan Z, Du L, Su Y, et al. 2016. Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming inductive microtissues for hair-follicle regeneration. ACS Appl. Mater. Interfaces 8: 5906-5916.
    Pubmed CrossRef
  44. Luanpitpong S, Nimmannit U, Chanvorachote P, Leonard SS, Pongrakhananon V, Wang L, et al. 2011. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2dependent mechanism. Apoptosis 16: 769-782.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd