Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-8: 1316~1323

AuthorJeong Yoon Lee, Sojung Bae, Jinjong Myoung
Place of dutyKorea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Chonbuk National University, Jeongju 54531, Republic of Korea
TitleMiddle East Respiratory Syndrome Coronavirus-Encoded Accessory Proteins Impair MDA5-and TBK1-Mediated Activation of NF-κB
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-8
AbstractMiddle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging coronavirus which is zoonotic from bats and camels. Its infection in humans can be fatal especially in patients with preexisting conditions due to smoking and chronic obstructive pulmonary disease (COPD). Among the 25 proteins encoded by MERS-CoV, 5 accessory proteins seem to be involved in viral evasion of the host immune responses. Here we report that ORF4a, ORF4b, and ORF8b proteins, alone or in combination, effectively antagonize nuclear factor kappa B (NF-κB) activation. Interestingly, the inhibition of NF-κB by MERS-CoV accessory proteins was mostly at the level of pattern recognition receptors: melanoma differentiationassociated gene 5 (MDA5). ORF4a and ORF4b additively inhibit MDA5-mediated activation of NF-κB while that of retinoic acid-inducible gene 1 (RIG-I) is largely not perturbed. Of note, ORF8b was found to be a novel antagonist of MDA5-mediated NF-κB activation. In addition, ORF8b also strongly inhibits Tank-binding kinase 1 (TBK1)-mediated induction of NF-κB signaling. Taken together, MERS-CoV accessory proteins are involved in viral escape of NF- κB-mediated antiviral immune responses.
Full-Text
Key_wordMERS-CoV, NF-kB, inhibition
References
  1. Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. 2 01 7. F urther e vidence for bats a s the evolutionary source of Middle East respiratory syndrome coronavirus. MBio 8:pii: e00373-17.
    CrossRef
  2. Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, et al. 2017. Global patterns in coronavirus diversity. Virus Evol. 3: vex012.
    CrossRef
  3. Banerjee A, Falzarano D, Rapin N, Lew J, Misra V. 2019. Interferon regulatory factor 3-mediated signaling limits Middle-East respiratory syndrome (MERS) coronavirus propagation in cells from an insectivorous bat. Viruses 11(2). pii: E152.
    CrossRef
  4. Goldstein SA, Weiss SR. 2017. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus:recent advances. F1000Res 6: 1628.
    CrossRef
  5. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13: e1006698.
    CrossRef
  6. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679.
    CrossRef
  7. Yu P, Hu B, Shi ZL, Cui J. 2019. Geographical structure of bat SARS-related coronaviruses. Infect. Genet. Evol. 69: 224-229.
    CrossRef
  8. Huang YW, Dickerman AW, Pineyro P, Li L, Fang L, Kiehne R, et al. 2013. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4: e00737-00713.
    CrossRef
  9. Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, et al. 201 8. F atal swine a cute diarrhoea s yndrome c aused by an HKU2-related coronavirus of bat origin. Nature 556: 255-258.
    CrossRef
  10. Hayman DT. 2016. Bats as viral reservoirs. Annu. Rev. Virol. 3: 77-99.
    CrossRef
  11. Luis AD, Hayman DT, O'Shea TJ, Cryan PM, Gilbert AT, Pulliam JR, et al. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280: 20122753.
    CrossRef
  12. Maxmen A. 2017. Bats are global reservoir for deadly coronaviruses. Nature 546: 340.
    CrossRef
  13. Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, et al. 2012. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 17(39). pii: 20285.
    CrossRef
  14. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367: 1814-1820.
    CrossRef
  15. van den Brand JM, Smits SL, Haagmans BL. 2015. Pathogenesis of Middle East respiratory syndrome coronavirus. J. Pathol. 235: 175-184.
    CrossRef
  16. Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL Jr., Graham RL, et al. 2017. MERS-CoV accessory ORFs play key role for infection and pathogenesis. MBio ;8(4). pii: e00665-17.
    CrossRef
  17. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of Middle East respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007.
  18. Nabel GJ, Verma IM. 1993. Proposed NF-kappa B/I kappa B family nomenclature. Genes Dev. 7: 2063.
    CrossRef
  19. Silverman N, Maniatis T. 2001. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15: 2321-2342.
    CrossRef
  20. Ghosh S , May MJ, Kopp EB. 1 998. N F-kappa B a nd R el proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260.
    CrossRef
  21. Verma I M, S tevenson J K, S chwarz E M, V an A ntwerp D , Miyamoto S. 1995. Rel/NF-kappa B/I kappa B family:intimate tales of association and dissociation. Genes Dev. 9: 2723-2735.
    CrossRef
  22. Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA. 2002. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277: 10842-10851.
    CrossRef
  23. Huang TT, Kudo N, Yoshida M, Miyamoto S. 2000. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc. Natl. Acad. Sci. USA 97: 1014-1019.
    CrossRef
  24. Huang TT, Miyamoto S. 2001. Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha. Mol. Cell Biol. 21: 4737-4747.
    CrossRef
  25. Li Q, Verma IM. 2002. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2: 725-734.
    CrossRef
  26. Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, Garcia-Sastre A, et al. 2018. MERSCoV 4b protein interferes with the NF-kappaB-dependent innate immune response during infection. PLoS Pathog. 14: e1006838.
    CrossRef
  27. Islam MN, Lee KW, Yim HS, Lee SH, Jung HC, Lee JH, et al. 2017. Optimizing T4 DNA polymerase conditions enhances the efficiency of one-step sequence- and ligation-independent cloning. Biotechniques 63: 125-130.
    CrossRef
  28. Jeong JY, Yim HS, Ryu JY, Lee HS, Lee JH, Seen DS, et al. 2012. One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl. Environ. Microbiol. 78: 5440-5443.
    CrossRef
  29. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 201 8. H epatitis E v irus m ethyltransferase i nhibits t ype I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562.
  30. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915.
  31. Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143.
    CrossRef
  32. Park MK, Cho H, Roh SW, Kim SJ, Myoung J. 2019. Cell type-specific interferon-gamma-mediated antagonism of KSHV lytic replication. Sci. Rep. 9: 2372.
    CrossRef
  33. Sen R, Baltimore D. 2006. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986. 46: 705-716.
    CrossRef
  34. Mauxion F, Pray MG, Sen R. 1990. Multiple nuclear factors interact with sequences within the J beta 2-C beta 2 intron of the murine T cell receptor beta-chain gene. J. Immunol. 145: 1577-1582.
  35. Sen R, Baltimore D. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46: 705-716.
    CrossRef
  36. Hayden MS, West AP, Ghosh S. 2006. SnapShot: NF-kappaB signaling pathways. Cell 127: 1286-1287.
    CrossRef
  37. Hayden MS, Ghosh S. 2004. Signaling to NF-kappaB. Genes Dev. 18: 2195-2224.
    CrossRef
  38. Shin CH, Choi DS. 2019. Essential roles for the noncanonical IkappaB kinases in linking inflammation to cancer, obesity, and diabetes. Cells 8.
    CrossRef
  39. Vallabhapurapu S, Karin M. 2009. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27: 693-733.
    CrossRef
  40. Karin M, Delhase M. 2000. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin. Immunol. 12: 85-98.
    CrossRef
  41. Sun SC. 2017. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 17: 545-558.
    CrossRef
  42. Sun SC. 2011. Non-canonical NF-kappaB signaling pathway. Cell Res. 21: 71-85.
    CrossRef
  43. Peters RT, Liao SM, Maniatis T. 2000. IKKepsilon is part of a novel PMA-inducible IkappaB kinase complex. Mol. Cell 5: 513-522.
    CrossRef
  44. Pomerantz JL, Baltimore D. 1999. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18: 6694-6704.
    CrossRef
  45. Taylor SL, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS. 2009. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alphainduced activation of nuclear factor kappa B. J. Virol. 83: 1271-1279.
    CrossRef
  46. Ye J, Chen Z, Li Y, Zhao Z, He W, Zohaib A, et al. 2 01 7. Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-kappaB. J. Virol. 91.
    CrossRef
  47. Xu H, Su C, P earson A , Mody CH, Zheng C . 201 7. H erpes simplex virus 1 UL24 abrogates the DNA sensing signal pathway by inhibiting NF-kappaB activation. J. Virol. 91.
    CrossRef
  48. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735.
    CrossRef
  49. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329.
    CrossRef
  50. Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Muller H, et al. 2017. The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog. 13: e1006286.
    CrossRef
  51. Smits S L, de Lang A, v an d en Brand JM, L eijten LM, van IWF, Eijkemans MJ, et al. 2010. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 6: e1000756.
    CrossRef
  52. Versteeg GA, Garcia-Sastre A. 2010. Viral tricks to grid-lock the type I interferon system. Curr. Opin. Microbiol. 13: 508-516
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd