Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 1975~1981

AuthorMin Namgung, Yeon-Jeong Lim, Min Kyu Kang, Chang-Sik Oh, Duck-Hwan Park
Place of dutyKangwon National University, Republic of Korea
TitlePseudomonas syringae pv. tomato DC3000 Improves Escherichia coli O157:H7 Survival in Tomato Plants
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
AbstractRecently, outbreaks of food-borne diseases linked to fresh produce have been an emerging public health concerns worldwide. Previous research has shown that when human pathogens co-exist with plant pathogens, they have improved growth and survival rates. In this study, we have assessed whether Escherichia coli O157:H7 benefits in the existence of a phytopathogenic bacterium and the underlying mechanisms were further investigated. When Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and E. coli O157:H7 were co-inoculated by either dipping or infiltration methods, the populations of E. coli O157:H7 increased; however, no effect was observed when type three secretion system (T3SS) mutants were used instead, suggesting that E. coli O157:H7 benefits from the presence of Pst DC3000. In addition, this study confirmed that the E. coli O157:H7 populations increased when they occupied the tomato leaf intercellular space; this colonization of the interior of the leaves was possible due to the suppression of the PAMP triggered immunity (PTI) by Pst DC3000, in particular with the AvrPto effector. In conclusion, our data supports a plausible model that E. coli O157:H7 benefits from the presence of Pst DC3000 via AvrPto suppression of the PTI resistance.
Full-Text
Key_wordAvrPto, E. coli O157:H7, effector, food-borne disease, Pseudomonas syringae pv. tomato DC3000, tomato
References
  1. Barak JD, Schroeder BK. 2012. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annu. Rev. Phytopathol. 50: 241-266.
    Pubmed CrossRef
  2. Watanabe Y, Ozasa K, Mermin JH, Griffin PM, Masuda K, Imashuku S, et al. 1999. Factory outbreak of Escherichia coli O157:H7 infection in Japan. Emerg. Infect. Dis. 5: 424-428.
    Pubmed CrossRef Pubmed Central
  3. Doyle MP, Erickson MC. 2008. Summer meeting 2007 – the problems with fresh produce: an overview. J. Appl. Microbiol. 105: 317-330.
    Pubmed CrossRef
  4. Melotto M, Panchal S, Roy D. 2014. Plant innate immunity against human bacterial pathogens. Front Microbiol. 5: doi: 10.3389/fmicb.2014.00411.
    Pubmed CrossRef Pubmed Central
  5. Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6: e27340.
    Pubmed CrossRef Pubmed Central
  6. Roy D, Ranchal W, Rosa BA, Melotto M. 2013. Escherichia coli O157:H7 induces plant immunity than Salmonella enterica Typhimurium SL1344. Phyhtopathology 103: 326-332.
    Pubmed CrossRef Pubmed Central
  7. Seo S, Matthews KR. 2012. Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl. Environ. Microbiol. 78: 5882-5889.
    Pubmed CrossRef Pubmed Central
  8. Meng F, Altier C, Martin GB. 2014. Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ. Microbiol. 15: 2418-2430.
    Pubmed CrossRef
  9. Simko I, Zhou Y, Brandl M. 2015. Downy mildew disease promotes the colonization of romain lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiol. 15: 19. doi: 10.1186/s12866-015-0360-5.
    Pubmed CrossRef Pubmed Central
  10. Nguyen HP, Chakravarthy S, Velásquez AC, McLane HL, Zeng L, Nakayashiki H, et al. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant Microbe Interact. 23: 991-999.
    Pubmed CrossRef
  11. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, et al. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12: 2385-2397.
    Pubmed CrossRef
  12. Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. 2013. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology 103: 333-340.
    Pubmed CrossRef
  13. Solomon EB, Pang HJ, Matthews KR. 2003. Persistence of Escherichia coli O157:H7 on lettuce plants following spray irrigation with contaminated water. J. Food Prot. 66: 2198-2202.
    Pubmed CrossRef
  14. Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, et al. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75: 6076-6086.
    Pubmed CrossRef Pubmed Central
  15. Thilmony R, Underwood W, He SY. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46: 34-53.
    Pubmed CrossRef
  16. Hauck P, Thilmony R, He SY. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100: 8577-8582.
    Pubmed CrossRef Pubmed Central
  17. Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266.
    Pubmed CrossRef
  18. Potnis N, SotoArias JP, Cowles KN, van Bruggen AH, Jones JB, Barak JD. 2014. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80: 3173-3180.
    Pubmed CrossRef Pubmed Central
  19. Abramovitch RB, Kim Y-J, Chen S, Dickman MB, Martin GB. 2003. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 22: 60-69.
    Pubmed CrossRef Pubmed Central
  20. Chang JH, Rathjen JP, Bernal AJ, Staskawicz BJ, Michelmore RW. 2000. AvrPto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pto or Prf. Mol. Plant Microbe Interact. 13: 568-571.
    Pubmed CrossRef
  21. Shan L, Thara VK, Martin GB, Zhou JM, Tang X. 2000. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12: 2323-2338.
    Pubmed CrossRef Pubmed Central
  22. Wei H-L, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, et al. 2015. Pseudomonas syringae pv. tomato DC3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe 17: 752-762.
    Pubmed CrossRef Pubmed Central
  23. Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, et al. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4: 17-27.
    Pubmed CrossRef Pubmed Central
  24. Xin X, He SY. 2013. Pseudomonas syringae pv. tomato DC3000:a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51: 473-498.
    Pubmed CrossRef
  25. Almeida DP, Huber DJ. 1999. Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol. Plantarum 105: 506-512.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd