Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-11: 1729~1738

AuthorDa Min Park, Jae-Han Bae, Min Soo Kim, Hyeontae Kim, Shin Dal Kang, Sangmin Shim, Deukbuhm Lee, Jin-Ho Seo, Hee Kang, Nam Soo Han
Place of dutyBrain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
TitleSuitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-11
AbstractIn sourdough fermentation, lactic acid bacteria perform important roles in the production of volatile and antimicrobial compounds, and exerting health-promoting effects. In this study, we report the probiotic properties and baking characteristics of Lactobacillus plantarum SPCSNU 72-2 isolated from kimchi. This strain is safe to use in food fermentation as it does not carry genes for biogenic amine production (i.e., hdc, tdc, and ldc) and shows no β-hemolytic activity against red blood cells. The strain is also stable under simulated human gastrointestinal conditions, showing tolerance to gastric acid and bile salt, and adheres well to colonic epithelial cells. Additionally, this strain prevents pathogen growth and activates mouse peritoneal macrophages by inducing cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. Furthermore, the strain possesses good baking properties, providing rich aroma during dough fermentation and contributing to the enhancement of bread texture. Taken together, L. plantarum SPC-SNU 72-2 has the properties of a good starter strain based on the observation that it improves bread flavor and texture while also providing probiotic effects comparable with commercial strains.
Full-Text
Supplemental Data
Key_wordLactobacillus plantarum, sourdough, starter, probiotics, baking
References
  1. Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K. 2005. Potential of sourdough for healthier cereal products. Trends Food Sci. Technol. 16: 104-112.
    CrossRef
  2. Clarke CI, Arendt EK. 2005. A review of the application of sourdough technology to wheat breads, pp. 137-161. In Taylor S (eds.), Advances in Food and Nutrition Research v. 49, Elsevier, Amsterdam, Netherlands.
    CrossRef
  3. Mantzourani I, Plessas S, Odatzidou M, Alexopoulos A, Galanis A, Bezirtzoglou E, et al. 2019. Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chem. 271: 259-265.
    Pubmed CrossRef
  4. Carnevali P, Ciati R, Leporati A, Paese M. 2007. Liquid sourdough fermentation: industrial application perspectives. Food Microbiol. 24: 150-154.
    Pubmed CrossRef
  5. Nionelli L, Montemurro M, Pontonio E, Verni M, Gobbetti M, Rizzello CG. 2018. Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification. Int. J. Food Microbiol. 279: 14-25.
    Pubmed CrossRef
  6. De Vuyst L, Vancanneyt M. 2007. Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol. 24: 120-127.
    Pubmed CrossRef
  7. Gerez CL, Torino MI, Roll G, Devaldez FG. 2009. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20: 144-148.
    CrossRef
  8. Loponen J, Kanerva PI, Zhang C, Sontag-Strohm T, Salovaara H, Ganzle MG. 2009. Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. J. Agric. Food Chem. 57: 746-753.
    Pubmed CrossRef
  9. Arendt EK, Moroni A, Zannini E. 2011. Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb. Cell Fact. 10(Suppl1): S15.
    Pubmed CrossRef Pubmed Central
  10. Di Monaco R, Torrieri E, Pepe O, Masi P, Cavella S. 2015. Effect of sourdough with exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) on sensory quality of bread during shelf life. Food Bioproc. Tech. 8: 691-701.
    CrossRef
  11. Nionelli L, Rizzello CG. 2016. Sourdough-based biotechnologies for the production of gluten-free foods. Foods 5: 65.
    Pubmed CrossRef Pubmed Central
  12. Jonkuvienė D, Vaičiulytė-Funk L, Šalomskienė J, AlenčikienėG, Mieželienė A. 2016. Potential of Lactobacillus reuteri from spontaneous sourdough as a starter additive for improving quality parameters of bread. Food Technol. Biotechnol. 54: 342-350.
    Pubmed CrossRef Pubmed Central
  13. Petel C, Onno B, Prost C. 2017. Sourdough volatile compounds and their contribution to bread: a review. Trends Food Sci. Technol. 59: 105e123.
    CrossRef
  14. FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Available from http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed Jully 2, 2019.
  15. Figueroa-González I, Quijano G, Ramírez G, Cruz-Guerrero A. 2011. Probiotics and prebiotics – perspectives and challenges. J. Sci. Food Agric. 91: 1341-1348.
    Pubmed CrossRef
  16. Kumar R, Dhanda S. 2017. Mechanistic insight of probiotics derived anticancer pharmaceuticals: a road forward for cancer therapeutics. Nutr. Cancer 69: 375-380.
    Pubmed CrossRef
  17. Nazir Y, Hussain SA, Hamid AA, Song Y. 2018. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Res. Int. 3428437: 17.
    Pubmed CrossRef Pubmed Central
  18. Piqué N, Berlanga M, Miñana-Galbis D. 2019. Health benefits of heat-killed (tyndallized) probiotics: an overview. Int. J. Mol. Sci. 20: 2534.
    Pubmed CrossRef Pubmed Central
  19. Lee HA, Kim H, Lee KW, Park KY. 2016. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 sells and mouse splenocytes. Int. J. Microbiol. Biotechnol. 26: 469-476.
    Pubmed CrossRef
  20. Sarkar S. 2018. Whether viable and dead probiotic are equally efficacious? Nutrition Food Sci. 48: 285-300.
    CrossRef
  21. Lim SB, Tingirikari JMR, Kwon YW, Li L, Kim GE, Han NS. 2017. Polyphasic microbial analysis of traditional Korean Jeung-Pyun sourdough fermented with Makgeolli. J. Microbiol. Biotechnol. 27: 226-233.
    Pubmed CrossRef
  22. Lim SB, Tingirikari JMR., Seo JS, Li L, Shim S, Seo JH, et al. 2018. Isolation of lactic acid bacteria starters from Jeungpyun for sourdough fermentation. Food Sci. Biotechnol. 27: 73-78.
    Pubmed CrossRef Pubmed Central
  23. Kim SY, Yoo KS, Kim JE, Kim JS, Jung JY, Jin Q, et al. 2010. Diversity analysis of lactic acid bacteria in Korean rice wines by culture-independent method using PCR-denaturing gradient gel electrophoresis. Food Sci. Biotechnol. 19: 749-755.
    CrossRef
  24. Park J, Seo JS, Kim SA, Shin SY, Park JH, Han NS. 2017. Microbial diversity of commercial makgeolli and its influence on the organoleptic characteristics of Korean rice sourdough, Jeung-Pyun. J. Microbiol. Biotechnol. 27: 1736-1743.
    Pubmed CrossRef
  25. Kim SY, Yoo KS, Kim YJ, Seo EY, Kim BS, Han NS. 2011. Monitoring of Leuconostoc population during sauerkraut fermentation by quantitative real-time polymerase chain reaction. J. Microbiol. Biotechnol. 21: 1069-1072.
    Pubmed CrossRef
  26. Moon JS, Choi HS, Shin SY, Noh SJ, Jeon CO, Han NS. 2015. Genome sequence analysis of potential probiotic strain Leuconostoc lactis EFEL005 isolated from kimchi. Journal of Microbiology 53: 337-342.
    Pubmed CrossRef
  27. Kang H, Moon JS, Lee MG, Han NS. 2016. Immunomodulatory effects of Leuconostoc citreum EFEL2061 isolated from kimchi, a traditional Korean food, on the Th2 type-dominant immune response in vitro and in vivo. J. Funct. Foods 20: 79-87.
    CrossRef
  28. O’Sullivan DJ, Fallico V, O’Sullivan O, McSweeney PLH, Sheehan JJ, Cotter PD, et al. 2015. High-throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses. BMC Microbiol. 15: 266.
    Pubmed CrossRef Pubmed Central
  29. Noh SJ. 2017. Physiological characterization of Leuconostoc lactis EFEL005 as potential probiotics (master degree thesis). Chungbuk National University, Cheongju, Korea.
  30. Ryu EH, Chang HC. 2013. In vitro study of potentially probiotic lactic acid bacteria strains isolated from kimchi. Ann. Microbiol. 63: 1387-1395.
    CrossRef
  31. Conway PL, Gorbach SL, Goldin BR. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12.
    CrossRef
  32. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16: 189-199.
    CrossRef
  33. Gilliland SE, Staley TE, Bush LJ. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67: 3045-3051.
    CrossRef
  34. Messaoudi S, Madi A, Prévost H, Feuilloley M, Manai M, Dousset X, et al. 2012. In vitro evaluation of the probiotic potential of Lactobacillus salivarius SMXD51. Anaerobe 18: 584-589.
    Pubmed CrossRef
  35. Cizeikiene D, Juodeikiene G, Bartkiene, E, Damasius J, Paskevicius A. 2015. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread. Int. J. Food Sci. Nutr. 66: 736-742.
    Pubmed CrossRef
  36. Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, et al. 2004. Sourdough bread made from wheat and nontoxic flours and started with selected Lactobacilli is tolerated in celiac sprue patients. J. Appl. Environ. Microbiol. 70: 1088-1096.
    Pubmed CrossRef Pubmed Central
  37. Coda R, Rizzello CG, Gobbetti M. 2010. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 137: 236-245.
    Pubmed CrossRef
  38. Coda R, Rizzello CG, Pinto D, Gobbetti M. 2012. Selected lactic acid bacteria synthesize antioxidant peptides during sourdough fermentation of cereal flours. Appl. Environ. Microbiol. 78: 1087-1096.
    Pubmed CrossRef Pubmed Central
  39. Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M. 2014. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 37: 30-40.
    Pubmed CrossRef
  40. Priyadarshani WMD, Rakshit SK. 2014. Growth and biogenic amine (histamine and tyramine) potential of probiotic Lactobacillus asei in skim milk. Am. J. Food Technol. 9: 69-79.
    CrossRef
  41. Arena ME, Manca de Nadra MC. 2001. Biogenic amine production by Lactobacillus. J. Appl. Microbiol. 90: 158-162.
    Pubmed CrossRef
  42. Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, et al. 2012. Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front. Microbiol. 3: 122.
    CrossRef
  43. Masson F, Talon R, Montel MC. 1996. Histamine and tyramine production by bacteria from meat products. Int. J. Food Microbiol. 32: 199-207.
    CrossRef
  44. Tosukhowong A, Visessanguan W, Pumpuang L, Tepkasikul P, Panya A, Valyasevi R. 2011. Biogenic amine formation in Nham, a Thai fermented sausage, and the reduction by commercial starter culture, Lactobacillus plantarum BCC9546. Food Chem. 129: 846-853.
    Pubmed CrossRef
  45. Kidd P. 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 8: 223-246.
  46. Park HE, Um HB, Lee WK. 2018. The immune enhancing effects and characteristics of Bifidobacterium longum and Bifidobacterium breve for the probiotic use in humans and animals. J. Biomed. Transl. Res. 19: 65-72.
    CrossRef
  47. Park HE, Kang KW, Kim BS, Lee SM, Lee WK. 2017. Immunomodulatory potential of Weissella cibaria in aged C57BL/6J mice. J. Microbiol. Biotechnol. 27: 2094-2103.
    Pubmed CrossRef
  48. Sparo M, Delpech G, Batisttell, S, Basualdo JA. 2014. Immunomodulatory properties of cell wall extract from Enterococcus faecalis CECT7121. Braz. J. Infect. Dis. 18: 551-555.
    Pubmed CrossRef
  49. Jeong MJ, Kim JH, Yang H, Kang SD, Song S, Lee D, et al. 2019. Heat-killed Lactobacillus plantarum KCTC 13314BP enhances phagocytic activity and immunomodulatory effects via activation of MAPK and STAT3 pathways. J. Microbiol. Biotechnol. 29: 1248-1254.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd