Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-12: 1861~1872

AuthorYomna K Abdallah, Alberto T Estevez, Diaa El Deen M Tantawy, Ahmad M Ibraheem, Neveen M Khalil
Place of dutyInterior Design and Furniture Department, Faculty of Applied Arts, Helwan University, Egypt
TitleEmploying Laccase-Producing Aspergillus sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-12
AbstractIn the present work, we isolated and identified Aspergillus sydowii NYKA 510 as the most potent laccase producer. Its medium constituents were optimized to produce the highest possible amount of laccase, which was after 7 days at 31oC and pH 5.2. Banana peel and peptone excelled in inducing laccase production at concentrations of 15.1 and 2.60 g/l, respectively. Addition of copper sulfate elevated enzyme yield to 145%. The fungus was employed in a microbial fuel cell (MFC). The best performance was obtained at 2000 Ω achieving 0.76 V, 380 mAm-2, 160 mWm-2, and 0.4 W. A project to design a self-sufficient lighting unit was implemented by employing a system of 2 sets of 4 MFCs each, connected in series, for electricity generation. A scanning electron microscopy image of A. sydowii NYKA 510 was utilized in algorithmic form generation equations for the design. The mixed patterning and patterned customized mass approach were developed by the authors and chosen for application in the design.
Full-Text
Key_wordAspergillus sydowii, laccase, microbial fuel cell, self-sufficient lighting design
References
  1. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE. 2015. Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng. J. 54: 745-756.
    CrossRef
  2. Rahimnejad M, Ghoreyshi A, Najafpour G, Jafary T. 2011. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy 88: 3999-4004.
    CrossRef
  3. Santoro C, Arbizzani C, Erable B, Ieropoulos I. 2017. Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356: 225-244.
    Pubmed CrossRef Pubmed Central
  4. Liu H, Logan BE. 2004. Electricity generation using an aircathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci Technol. 38: 4040-4046.
    Pubmed CrossRef
  5. Rahimnejad M, Mokhtarian N, Najafpour GD, Ramli W, Wan Daud, Ghoreyshi AA, 2009. Low voltage power generation in a biofuel cell using anaerobic cultures. World Appl. Sci. J. 6: 1585-1588.
  6. Najafpour G, Rahimnejad M, Ghoreshi A, 2011. The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Source 33: 2239-2248.
    CrossRef
  7. Lai CY, Wu CH, Meng CT, Lin CW. 2017. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Appl. Energy 188: 392-398.
    CrossRef
  8. Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW. 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl. Microbiol. Biotechnol. 79: 379-388.
    Pubmed CrossRef
  9. Sharma Y, Li B. 2010. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour. Technol. 101: 1844-1850.
    Pubmed CrossRef
  10. Kacem SH, Galai S, De los Ríos AP, Fernández FJH, Smaali I. 2017. New efficient laccase immobilization strategy using ionic liquids for bio-catalysis and microbial fuel cells applications. J. Chem. Technol. Biotechnol. 93: 174-183.
    CrossRef
  11. Dwivedi UN, Singh P, Pandey VP, Kumar A, 2011. Review:structure-function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B: Enzymatic 68: 117-128.
    CrossRef
  12. Chaijak P, Sukkasem C, Lertworapreecha M, Boonsawang P, Wijasika S, Sato C. 2018. Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. J. Microbiol. Biotechnol. 28: 1360-1366.
    Pubmed CrossRef
  13. Barton SC, Pickard M, Vazquez-Duhalt R, Heller A. 2002. Electroreduction of O-2 to water at 0.6 V (SHE) at pH 7 on the ‘wired’ Pleurotus ostreatus laccase cathode. Biosens. Bioelectron. 17: 1071-1074.
    CrossRef
  14. Mani P, Keshavarz T, Chandra TS, Kyazze G, 2017. Decolourisation of acid orange 7 in a microbial fuel cell with a laccase-based biocathode: influence of mitigating pH changes in the cathode chamber. Enzyme Microb. Technol. 96: 170-176.
    Pubmed CrossRef
  15. Lai CY, Wu CH , Meng CT, Lin CW 2017. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Appl. Energy. 188: 392-398.
    CrossRef
  16. Johnson LF, Curl EA, JH Bond JH, HA. 1960. Fribourg, Methods for Studying Soil Mycoflora: Plant Diseases Relationships. pp. 179. Burgess Publishing Co., Minneapolis.
  17. Moubasher AH. 1993. Soil Fungi in Qatar and other Arab Countries. pp. 566. The Scientific and Applied Research Centre., First ed. University of Qatar, Doha, Qatar.
  18. Watanabe T. 2002. Soil and Seed Fungi. Pictorial Atlas of Soil and Seed Fungi. Morphologies of Cultured Fungi and Key to Species., Second ed. CRC Press. Boca Raton London New York Washington D.C.
    CrossRef
  19. Olga VKS, Elena VS, Valeria PG, Olga VM, Natalia VL, Aida ND, et al. 1998. Purification and characterization of the constitutive form of laccase from basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis. Biotechnol. Appl. Biochem. 28: 47-54.
  20. Das P, Mukherjee S, Sen R. 2008. Improved bioavailability and biodegradation of a model poly aromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72: 1229-1234.
    Pubmed CrossRef
  21. (http://www.thermoscientificbio.com/)
  22. Cheng S, Liu H, Logan B, 2006. Increased performance of single chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 8: 489-494.
    CrossRef
  23. Khater DZ, El-Khatib KM, Hassan HM. 2017. Microbial diversity structure in acetate single chamber microbial fuel cell for electricity generation. J. Gen. Eng. Biotechnol. 15: 127-137.
    Pubmed CrossRef Pubmed Central
  24. Jadhav GS, Ghangrekar MM, 2009. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour. Technol. 100: 717-723.
    Pubmed CrossRef
  25. Logan BE. 2008. Microbial Fuel Cells. pp. 216. First ed. New Jersey: John Wiley & Sons.
  26. https://www.energyavenue.com/LED-Light-Bulbs/Festoon/08-Watt. 2019.
  27. Brijwani K, Rigdon A, Vadlani PV. 2010. Fungal laccases:production, function, and applications in food processing. Enzyme Res. 2010: 149748.
    Pubmed CrossRef Pubmed Central
  28. Ghosh P, Ghosh U 2017. Statistical optimization of laccase production by Aspergillus flavus PUF5 through submerged fermentation using agro-waste as cheap substrate. Acta Biologica Szegediensis 61: 25-33.
  29. Prajapati HV, Minocheherhomji FP. 2018. Laccase - a wonder molecule: a review of its properties and applications. Int. J. Pure Appl. Biosci. 6: 766-773.
    CrossRef
  30. Bhattacharya SS, Garlapati VK, Banerjee R. 2011. Optimization of laccase production using response surface methodology coupled with differential evolution. New Biotechnol. 28: 31-39.
    Pubmed CrossRef
  31. Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the fungi. 10th ed. pp. 68. CABI, Wallingford, UK.
  32. Cong B, Wang N, Liu S, Liu F, Yin X, Shen J, 2017. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source. BMC Microbiol. 17: 129.
    Pubmed CrossRef Pubmed Central
  33. More SS, Renuka PS, Pruthvi K, Swetha M, Malini S, Veena SM. 2011. Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res. 2011: 248735.
    Pubmed CrossRef Pubmed Central
  34. Pointing SB, Jones EBG, Vrijmoed LLP. 2000. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92: 139-144
    CrossRef
  35. Hazuchová M, Chmelová D, Ondrejovič M, 2017. The optimization of propagation medium for the increase of laccase production by the white-rot fungus Pleurotus ostreatus. Nova Biotechnologica et Chimica 16: 113-123.
    CrossRef
  36. Vivekanand V, Dwivedi P, Pareek N, Singh RP. 2011. Banana peel: a potential substrate for laccase production by Aspergillus fumigatus VkJ2.4.5 in solid-state fermentation. Appl. Biochem. Biotechnol. 165: 204-220.
    Pubmed CrossRef
  37. Minussi RC, Pastore GM, Duran N. 2002. Potential applications of laccase in the food industry. Trends Food Sci. Technol. 13: 205-216.
    CrossRef
  38. Couto R, Maria SS. 2005. Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 36: 211-219 .
    CrossRef
  39. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K, 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101: 1533-1543.
    Pubmed CrossRef
  40. Tanikkula P, Pisutpaisala N. 2015. Performance of a membrane-less air-cathode single chamber microbial fuel cell in electricity generation from distillery wastewater, Energy Procedia. 79: 646-650. Science Direct 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies.
    CrossRef
  41. Oh SE, Logan BE. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39: 4673-4682.
    Pubmed CrossRef
  42. Liu H, Cheng S, Logan BE. 2006. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 9: 658-662.
    Pubmed CrossRef
  43. Flimban SGA, Ismail IMI, Kim T, Oh SE. 2019. Overview of recent advancements in the microbial fuel cell from fundamentals to applications: Design, major elements, and scalability. Energies 12: 3390.
    CrossRef
  44. Azuma M, Ojima Y. 2018. Catalyst Development of Microbial Fuel Cells for Renewable-Energy Production doi: 10.5772/intechopen.81442.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd