Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-10: 1644~1655

AuthorXi Zhong, Guopeng Liang, Lili Cao, Qi Qiao, Zhi Hu, Min Fu, Bo Hong, Qin Wu, Guanlin Liang, Zhongwei Zhang, Lin Zhou
Place of dutyIntensive Care Unit, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
TitleEffects of Glucagon-Like Peptide-2-Expressing Saccharomyces cerevisiae Not Different from Empty Vector
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-10
AbstractSaccharomyces cerevisiae (S. cerevisiae) and glucagon-like peptide-2 (GLP-2) has been employed to improve weaned-animal’s intestinal development. The goal of this study was to determine whether either exogenous S. cerevisiae or GLP-2 elicits the major effects on fecal microbiotas and cytokine responses in weaned-piglets. Ninety-six piglets weaned at 26 days were assigned to one of four groups: 1) Basal diet (Control), 2) empty vector-harboring S. cerevisiae (EV-SC), 3) GLP-2-expressing S. cerevisiae (GLP2-SC), and 4) recombinant human GLP-2 (rh-GLP2). At the start of the post-weaning period (day 0), and at day 28, fecal samples were collected to assess the bacterial communities via sequencing the V1-V2 region of the 16S-rRNA gene, and piglets’ blood was also sampled to measure cytokine responses (i.e., IL-1β, TNF-α, and IFN-γ). Revealed in this study, on the one hand, although S. cerevisiae supplementation did not significantly alter the growth of weaned-piglets, it exhibited the increases in the relative abundances of two core genera (Ruminococcaceae_norank and Erysipelotrichaceae_norank) and the decreases in the relative abundances of other two core genera (Lachnospiraceae_norank and Clostridiale_norank) and cytokine levels (IL-1β and TNF-α) (P < 0.05, Control vs EV-SC; P < 0.05, rh-GLP2 vs GLP2-SC). On the other hand, GLP-2 supplementation had no significant influence on fecal bacterial communities and cytokine levels, but it had better body weight and average daily gain (P < 0.05, Control vs EV-SC; P < 0.05, rh-GLP2 vs GLP2-SC). Herein, altered the fecal microbiotas and cytokine response effects in weaned-piglets was due to S. cerevisiae rather than GLP-2.
Full-Text
Supplemental Data
Key_wordSus scrofa, weaned piglets, Saccharomyces cerevisiae, glucagon-like peptide-2, fecal microbiota
References
  1. Lallès J-P, Bosi P, Smidt H, Stokes CR. 2007. Weaning-a challenge to gut physiologists. Livest. Sci. 108: 82-93.
    CrossRef
  2. Wang S, Guo C, Zhou L, Zhang Z, Huang Y, Yang J, et al. 2015. Comparison of the biological activities of Saccharomyces cerevisiae-expressed intracellular EGF, extracellular EGF, and tagged EGF in early-weaned pigs. Appl. Microbiol. Biotechnol. 99: 7125-7135.
    Pubmed CrossRef
  3. Van der Meulen J, Koopmans S, Dekker R, Hoogendoorn A. 2010. Increasing weaning age of piglets from 4 to 7 weeks reduces stress, increases post-weaning feed intake but does not improve intestinal functionality. Animal 4: 1653-1661.
    Pubmed CrossRef
  4. Thymann T, Huerou-Luron L, Petersen Y, Hedemann MS, Elinf J, Jensen BB, et al. 2014. Glucagon-like peptide 2 treatment may improve intestinal adaptation during weaning. J. Anim. Sci. 92: 2070-2079.
    Pubmed CrossRef
  5. Zhang Z, Wu X, Cao L, Zhong Z, Zhou Y. 2016. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats. Microb. Biotechnol. 9: 846-857.
    Pubmed CrossRef
  6. Boudry G, Péron V, Le Huërou-Luron I, Lallès JP, Sève B. 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134: 2256-2262.
    Pubmed CrossRef
  7. Wang S, Wang B, He H, Sun A, Guo C. 2018. A new set of reference housekeeping genes for the normalization RTqPCR data from the intestine of piglets during weaning. PLoS One 13: e0204583.
    Pubmed CrossRef
  8. Qi KK, Wu J, Deng B, Li YM, Xu ZW. 2015. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS. Animal 9: 1481-1489.
    Pubmed CrossRef
  9. Pedersen NB, Hjollund KR, Johnsen AH, Ørskov C, Rosenkilde MM, Hartmann B, et al. 2008. Porcine glucagonlike peptide-2: structure, signaling, metabolism and effects. Regul. Pept. 146: 310-320.
    Pubmed CrossRef
  10. Romanos MA, Scorer CA, Clare JJ. 1992. Foreign gene expression in yeast: a review. Yeast 8: 423-488.
    Pubmed CrossRef
  11. Wang S, Zhou L, Chen H, Cao Y, Zhang Z, Yang J, et al. 2015. Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF, extracellular EGF, and tagged EGF in early-weaned rats. Appl. Microbiol. Biotechnol. 99: 2179-2189.
    Pubmed CrossRef
  12. Cheung QC, Yuan Z, Dyce PW, Wu D, DeLange K, Li J. 2009. Generation of epidermal growth factor–expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. Am. J. Clin. Nutr. 89: 871-879.
    Pubmed CrossRef
  13. Council NR. 2012. Nutrient requirements of swine: National Academies Press.
  14. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, et al. 2012. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 6: 94-103.
    Pubmed CrossRef
  15. Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, et al. 2015. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 5: 15220.
    Pubmed CrossRef
  16. Wang S, Guo C, Zhou L, Zhong Z, Zhu W, Huang Y, et al. 2016. Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. Br. J. Nutr. 115: 1509-1520.
    Pubmed CrossRef
  17. Jiang Yi, J ia Gang, H ui Ming Di, Chen Xiao Ling, L i Hua, Wang Kang Ning. 2012. Effects of glucagon-like peptide-2 supplementation on expression of intestinal epithelial tight junction protein related genes in weaner piglets in vitro. Chinese. J. Anim. Nutr. 9: 022.
  18. Qi K, Sun Y, Wan J, Deng B, Men X, Wu J, et al. 2017. Effect of porcine glucagon-like peptides-2 on tight junction in GLP-2R+ IPEC-J2 cell through the PI3k/Akt/mTOR/p70S6K signalling pathway. J. Anim. Physiol. Anim. Nutr. 101: 1242-1248.
    Pubmed CrossRef
  19. Deng QH, Jia G, Zhao H, Chen ZL, Chen XL, Liu GM, et al. 2016. The prolonged effect of glucagon-like peptide 2 pretreatment on growth performance and intestinal development of weaned piglets. J. Anim. Sci. Biotechnol. 7: 28.
    Pubmed CrossRef
  20. Connor EE, Evock-Clover C, Wall E, Baldwin R, SantinDuran M, Elsasser T, et al. 2016. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest. Anim. Endocrinol. 56: S56-S65.
    Pubmed CrossRef
  21. Zhang Z, Cao L, Zhou Y, Wang S, Zhou L. 2016. Analysis of the duodenal microbiotas of weaned piglet fed with epidermal growth factor-expressed Saccharomyces cerevisiae. BMC. Microbiol. 16: 166.
    Pubmed CrossRef
  22. Levesque CL, Akhtar N, Huynh E, Walk C, Wilcock P, Zhang Z, et al. 2018. The impact of epidermal growth factor supernatant on pig performance and ileal microbiota. Translation. Animal. Sci. 2: 184-194.
    CrossRef
  23. Kiarie E, Bhandari S, Scott M, Krause D, Nyachoti C. 2011. Growth performance and gastrointestinal microbial ecology responses of piglets receiving fermentation products after an oral challenge with (K88). J. Anim. Sci. 89: 1062-1078.
    Pubmed CrossRef
  24. Trckova M, Faldyna M, Alexa P, Zajacova ZS, Gopfert E, Kumprechtova D, et al. 2014. The effects of live yeast on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 92: 767-774.
    Pubmed CrossRef
  25. Nguyen T, Fleet G, Rogers P. 1998. Composition of the cell walls of several yeast species. Appl. Microbiol. Biotechnol. 50:206-212.
    Pubmed CrossRef
  26. Spring P, Wenk C, Dawson K, Newman K. 2000. The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79: 205-211.
    Pubmed CrossRef
  27. Li J, Kim IH. 2014. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Anim. Sci. J. 85: 698-705.
    Pubmed CrossRef
  28. McKay D, Baird A. 1999. Cytokine regulation of epithelial permeability and ion transport. Gut 44: 283-289.
    Pubmed CrossRef Pubmed Central
  29. Jiang Z, Wei S, Wang Z, Zhu C, Hu S, Zheng C, et al. 2015. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J. Anim. Sci. Biotechnol. 6: 47.
    Pubmed CrossRef Pubmed Central
  30. Zhong X, Wang S, Zhang Z, Cao L, Zhou L, Sun A, et al. 2019. Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Front. Microbiol. 9: 3335.
    Pubmed CrossRef Pubmed Central
  31. Li J, Xing J, Li D, Wang X, Zhao L, Lv S, et al. 2005. Effects of β-glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr. 59: 303-312.
    Pubmed CrossRef
  32. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. 2014. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J. Infect. Dis. 211: 19-27.
    Pubmed CrossRef Pubmed Central
  33. Kaakoush NO. 2015. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5: 84.
    Pubmed CrossRef Pubmed Central
  34. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. 2015. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5: 8096.
    Pubmed CrossRef Pubmed Central
  35. Xu J, C hen X, Y u S, S u Y, Z hu W. 2016. Effects of e arly intervention with sodium butyrate on gut microbiota and the expression of inflammatory cytokines in neonatal piglets. PLoS One 11: e0162461.
    Pubmed CrossRef Pubmed Central
  36. Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, JiménezHernández N, Pérez-Cobas AE, et al. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6: e17447.
    Pubmed CrossRef Pubmed Central
  37. Meehan CJ, Beiko RG. 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome. Biol. Evol. 6: 703-713.
    Pubmed CrossRef Pubmed Central
  38. Li M, Monaco MH, Wang M, Comstock SS, Kuhlenschmidt TB, Fahey GC, et al. 2014. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 8: 1609-1620.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd