Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-11: 1806~1816

AuthorPamela El Khoury, Carell Salameh, Samer Younes, Andy Awad, Yana Said, Roy A Khalaf
Place of dutyDepartment of Natural Sciences, Lebanese American University,Lebanon
TitlePhenotypic and Cell Wall Proteomic Characterization of a DDR48 Mutant Candida albicans Strain
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-11
AbstractCandida albicans is an opportunistic fungus possessing multiple virulence factors controlling pathogenicity. Cell wall proteins are the most important among these factors, being the first elements contacting the host. Ddr48 is a cell wall protein consisting of 212 amino acids. A DDR48 haploinsufficient mutant strain was previously found necessary for proper oxidative stress response and drug resistance. In this study, we aimed to further elucidate the role of Ddr48 by performing additional phenotypic characterization assays. A combinatory proteomic and bioinformatics approach was also undertaken to determine differentially expressed cell wall proteins. Results showed that the mutant strain exhibited a 10% decrease in adhesion mirrored by a 20% decrease in biofilm formation, and slight sensitivity to menadione, diamide, and SDS. Both strains showed similar hyphae formation, virulence, temperature tolerance, and calcofluor white and Congo red sensitivities. Furthermore, a total of 8 and 10 proteins were identified exclusively in the wild-type strain grown under filamentous and nonfilamentous conditions respectively. Results included proteins responsible for superoxide stress resistance (Sod4 and Sod6), adhesion (Als3, Hyr4, Pmt1, and Utr2), biofilm formation (Hsp90, Ece1, Rim9, Ipp1, and Pra1) and cell wall integrity (Utr2 and Pga4). The lack of detection of these proteins in the mutant strain correlates with the observed phenotypes.
Full-Text
Key_wordCandida albicans, cell wall, biofilms, oxidative stress, tandem mass spectrometry
References
  1. Sorgo AG, Heilmann CJ, Dekker HL, Brul S. 2010. Mass spectrometric analysis of the secretome of Candida albicans. Yeast 201027: 661-672.
    Pubmed CrossRef
  2. Southern P, Horbul J, Maher D, Davis DA. 2008. C. albicans colonization of human mucosal surfaces. PLoS One 3: e2067.
    Pubmed CrossRef Pubmed Central
  3. Viudes A, Pemán J, Cantón E, Úbeda P. 2002. Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur. J. Clin. Microbiol. Infect. Dis. 21: 767-774.
    Pubmed CrossRef
  4. Martins N, Ferreira IC, Barros L, Silva S. 2014. Candidiasis:predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223-240.
    Pubmed CrossRef
  5. Barada G, Basma R, Khalaf RA. 2008. Microsatellite DNA genotyping and identification of Candida albicans from Lebanese clinical isolates. Mycopathologia 165: 115-125.
    Pubmed CrossRef
  6. Yazbek S, Barada G, Basma R, Mahfouz J. 2007. Significant discrepancy between real-time PCR identification and hospital identification of C. albicans from Lebanese patients. Med. Sci. Monit. 13: MT7-MT12.
  7. Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133-163.
    Pubmed CrossRef Pubmed Central
  8. Cheng S, Clancy CJ, Checkley MA, Handfield M. 2003. Identification of Candida albicans genes induced during thrush offers insight into pathogenesis. Mol. Microbiol. 48: 1275-1288.
    Pubmed CrossRef
  9. Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119-28.
    Pubmed CrossRef Pubmed Central
  10. Jacobsen ID, Wilson D, Wächtler B, Brunke S. 2012. Candida albicans dimorphism as a therapeutic target. Expert. Rev. Anti. Infect. Ther. 10: 85-93.
    Pubmed CrossRef
  11. Brown AJ, Odds FC, Gow NA. 2007. Infection-related gene expression in Candida albicans. Curr. Opin. Microbiol. 10: 307-313.
    Pubmed CrossRef
  12. Sudbery PE. 2011. Growth of Candida albicans h y phae. Nat. Rev. Microbiol. 9: 737-748.
    Pubmed CrossRef
  13. Gow NA, Latge J, Munro CA. 2017. The fungal cell wall:structure, biosynthesis, and function. Microbiol. Spectr. 5(3).
    Pubmed CrossRef
  14. Masuoka J. 2004. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin. Microbiol. Rev. 17: 281-310.
    Pubmed CrossRef Pubmed Central
  15. Tronchin G, Poulain D, Herbaut J, Biguet J. 1981. Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultrastructural studies. Eur. J. Cell. Biol. 26: 121-128.
  16. Chaffin WL. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72: 495-544.
    Pubmed CrossRef Pubmed Central
  17. De Groot PW, Hellingwerf KJ, Klis FM. 2003. Genome-wide identification of fungal GPI proteins. Yeast 20: 781-796.
    Pubmed CrossRef
  18. Erwig LP, Gow NA. 2016. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14: 163-176.
    Pubmed CrossRef
  19. Bitar I, Khalaf RA, Harastani H, Tokajian. 2014. Identification, typing, antifungal resistance profile, and biofilm formation of Candida albicans isolates from Lebanese hospital patients. Biomed. Res. Int. 2014: 931372.
    Pubmed CrossRef Pubmed Central
  20. Thomas DP, Viudes A, Monteagudo C, Lazzell AL. 2006. A proteomic-based approach for the identification of Candida albicans protein components present in a subunit vaccine that protects against disseminated candidiasis. Proteomics 6: 6033-6041.
    Pubmed CrossRef
  21. Dib L, Hayek P, Sadek H, Beyrouthy B. 2008. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance. Med. Sci. Monit. 14: BR113–BR21.
  22. Cleary IA, M acGregor NB, S aville S P, T homas DP. 2012. Investigating the function of Ddr48p in Candida albicans. Eukaryot Cell 11: 718-724.
    Pubmed CrossRef Pubmed Central
  23. Awad A, El Khoury P, Wex B, Khalaf RA. 2018. Proteomic analysis of a Candida albicans pga1 null strain. EuPA Open Proteom. 18: 1-6.
    Pubmed CrossRef Pubmed Central
  24. Awad A, El Khoury P, Wex B, Khalaf RA. 2018. Tandem mass spectrometric cell wall proteome profiling of a Candida albicans hwp2 mutant strain. Curr. Mol. Pharmacol. 11: 211-225.
    Pubmed CrossRef
  25. El Khoury P, Awad A, Wex B, Khalaf RA. 2018. Proteomic analysis of a Candida albicans pir32 null strain reveals proteins involved in adhesion, filamentation and virulence. PLoS One 3: e0194403.
    Pubmed CrossRef Pubmed Central
  26. Zohbi R, Wex B, Khalaf RA. 2014. Comparative proteomic analysis of a Candida albicans DSE1 mutant under filamentous and non-filamentous conditions. Yeast 31: 441-448.
    Pubmed CrossRef
  27. Pedreño Y, González-Párraga P, Martínez-Esparza M, Sentandreu R. 2007. Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress. Microbiology 153: 1372-1381.
    Pubmed CrossRef
  28. Bahnan W, Koussa J, Younes S, Abi Rizk M. 2012. Deletion of the Candida albicans PIR32 results in increased virulence, stress response, and upregulation of cell wall chitin deposition. Mycopathologia 174: 107-119.
    Pubmed CrossRef
  29. Plaine A, Walker L, Da Costa G, Mora-Montes HM. 2008. Functional analysis of Candida albicans GPI-anchored proteins:roles in cell wall integrity and caspofungin sensitivity. Fungal Genet. Biol. 45: 1404-1414.
    Pubmed CrossRef Pubmed Central
  30. Peeters E, Nelis HJ, Coenye T. 2008. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72: 157-65.
    Pubmed CrossRef
  31. Tsuchimori N, Sharkey LL, Fonzi WA, French SW. 2000. Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect. Immun. 68: 1997-2002.
    Pubmed CrossRef Pubmed Central
  32. Daher JY, Koussa J, Younes S, Khalaf RA. 2011. The Candida albicans Dse1 protein is essential and plays a role in cell wall rigidity, biofilm formation, and virulence. Interdiscip. Perspect. Infect. Dis. 2011: 504280.
    Pubmed CrossRef Pubmed Central
  33. Munro CA, Whitton RK, Hughes HB, Rella M. 2003. CHS8—a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal. Genet. Biol. 40: 146-158.
    CrossRef
  34. Cabezón V, Llama-Palacios A, Nombela C, Monteoliva L. 2009. Analysis of Candida albicans plasma membrane proteome. Proteomics. 9: 4770-4786.
    Pubmed CrossRef
  35. Barrett J, Brophy PM, Hamilton JV. 2005. Analysing proteomic data. Int. J. Parasitol. 35: 543-553.
    Pubmed CrossRef
  36. Brasch J, Kreiselmaier I, Christophers E. 2003. Inhibition of dermatophytes by optical brighteners. Mycoses 46: 120-125.
    Pubmed CrossRef
  37. Nodet P, Capellano A, Fevre M. 1990. Morphogenetic effects of Congo red on hyphal growth and cell wall development of the fungus Saprolegnia monoica. J. Gen. Microbiol. 136: 303-310.
    CrossRef
  38. Ene I, Walker LA, Schiavone M, Lee KK. 2015. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. MBio 6: e00986-15.
    Pubmed CrossRef Pubmed Central
  39. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6: e1000828.
    Pubmed CrossRef Pubmed Central
  40. Frohner IE, Bourgeois C, Yatsyk K, Majer O. 2009. Candida albicans cell surface superoxide dismutases degrade hostderived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71: 240-252.
    Pubmed CrossRef Pubmed Central
  41. Rane HS, Bernardo SM, Hayek SR, Binder JL. 2014. The contribution of Candida albicans vacuolar ATPase subunit V 1 B, encoded by VMA2, to stress response, autophagy, and virulence is independent of environmental pH. Eukaryot. Cell 13: 1207-1221.
    Pubmed CrossRef Pubmed Central
  42. Alberti-Sequi C, Morales AJ, Xing H, Kessler MM. 2004. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cellsurface glycosidase in adhesion and virulence. Yeast 21: 285-302.
    Pubmed CrossRef
  43. Spreghini E, Davis DA, Subaran R, Kim M. 2003. Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot. Cell. 2: 746-755.
    Pubmed CrossRef Pubmed Central
  44. Klotz SA, Gaur NK, De Armond R, Sheppard D. 2007. Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med. Mycol. 45: 363-370.
    Pubmed CrossRef
  45. Nobile CJ, Fox EP, Nett JE, Sorrells TR. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148: 126-138.
    Pubmed CrossRef Pubmed Central
  46. Nobile CJ, Andes DR, Nett JE, Smith FJ. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2: e63.
    Pubmed CrossRef Pubmed Central
  47. Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA. 1998. Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J. Bacteriol. 180: 282-289.
  48. Peltroche-Llacsahuanga H, Goyard S, D’Enfert C, Prill SK. 2006. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob. Agents. Chemother. 50: 3488-3491.
    Pubmed CrossRef Pubmed Central
  49. Cornet M, Richard ML, Gaillardin C. 2009. The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Res. Microbiol. 160: 219-223.
    Pubmed CrossRef
  50. Bassilana M, Blyth J, Arkowitz RA. 2003. Cdc24, the GDPGTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot. Cell 2: 9-18.
    Pubmed CrossRef Pubmed Central
  51. Almeida RS, Brunke S, Albrecht A, Thewes S. 2008. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4: e1000217.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd