Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-11: 1745~1748

AuthorAnna Jong, Cheng Chung Yong, Oh Sejong
Place of dutyDivision of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
TitleBioconversion of Gamma-Aminobutyric Acid from Monosodium Glutamate by Lactobacillus brevis Bmb5
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-11
AbstractGamma-aminobutyric acid (GABA) plays important roles in host physiology. However, the effects of GABA are greatly restricted due to its low bioavailability in the human body. Here, a high acid-tolerance GABA-producing strain, Lactobacillus brevis Bmb5, was isolated from kimchi. Bmb5 converted glutamate to GABA (7.23 ± 0.68 μg/μl) at a rate of 72.3%. The expression of gadB gene, encoding the enzyme involved in the decarboxylation of glutamate to GABA, was decreased upon incubation. Our findings indicate GABA production in Bmb5 is not directly correlated with gadB gene expression, providing new insight into the mechanisms underlying GABA production in Lactobacillus.
Full-Text
Supplemental Data
Key_wordMonosodium glutamate, Lactobacillus, GABA, gene expression, glutamic acid decarboxylase
References
  1. Jakobs C, Jaeken J, Gibson K. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704-715.
    Pubmed CrossRef
  2. Adeghate E, Ponery A. 2002. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell. 34: 1-6.
    Pubmed CrossRef
  3. Wong CGT, Bottiglieri T, Snead OC. 2003. Gaba, γhydroxybutyric acid, and neurological disease. Ann. Neurol. 54: S3-S12.
    Pubmed CrossRef
  4. Seok J-H, Park K-B, Kim Y-H, Bae M-O, Lee M-K, Oh S-H. 2008. Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci. Biotechnol. 17: 940-946.
  5. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78.
    CrossRef
  6. Cho YR, Chang JY, Chang HC. 2007. Production of gammaaminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104-109.
  7. Wu Q, Shah NP. 2017. High γ-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Crit. Rev. Food Sci. Nutr. 57: 3661-3672.
    Pubmed CrossRef
  8. Wu Q, Shah NP. 2015. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria. J. Dairy Sci. 98: 790-797.
    Pubmed CrossRef
  9. Shan Y, Man C, Han X, Li L, Guo Y, Deng Y, et al. 2015. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J. Dairy Sci. 98: 2138-2149.
    Pubmed CrossRef
  10. Small PL, Waterman SR. 1998. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol. 6: 214-216.
    CrossRef
  11. Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MS-W, Gänzle MG. 2014. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol. 42: 172-180.
    Pubmed CrossRef
  12. Azuma R, Ogimoto K, Suto T. 1962. Anaerobic culture method with steel wool. Nihon saikingaku zasshi. Jpn. J. Bacteriol. 17: 802-806.
    Pubmed CrossRef
  13. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310.
    Pubmed CrossRef
  14. Feehily C, Karatzas K. 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114: 11-24.
    Pubmed CrossRef
  15. Yoshihashi T, Warun V, Patcharee T, Vipa S. 2009. Method for quantification of gamma-aminobutyric acid. Japan patent application PCT/JP2009/057537.
  16. Cho S-Y, Han D-W, G-S L. 2018. GABA flat fish sikhae containing high GABA and method for preparing thereof. South Korea patent application KR20160077998.
  17. Barrett E, Ross R, O'toole P, Fitzgerald G, Stanton C. 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113: 411-417.
    Pubmed CrossRef
  18. Ratanaburee A, Kantachote D, Charernjiratrakul W, Sukhoom A. 2013. Selection of γ-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int. J. Food Sci. Technol. 48: 1371-1382.
    CrossRef
  19. De Biase D, Pennacchietti E. 2012. Glutamate decarboxylasedependent acid resistance in orally acquired bacteria:function, distribution and biomedical implications of the gadBC operon. Mol. Microbiol. 86: 770-786.
    Pubmed CrossRef
  20. Mazzoli R, Pessione E, Dufour M, Laroute V, Giuffrida MG, Giunta C, et al. 2010. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production:combined transcriptomic and proteomic analysis. Amino Acids 39: 727-737.
    Pubmed CrossRef
  21. Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183.
    Pubmed CrossRef
  22. Zhuang K, Jiang Y, Feng X, Li L, Dang F, Zhang W, et al. 2018. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437T induced by L-MSG. PLoS One 13:e0199021.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd