Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-1: 54~61

AuthorJi Eun Moon, Wan Heo, Sang Hoon Lee, Suk Hee Lee, Hong Gu Lee, Jin Hyup Lee, Young Jun Kim
Place of dutyDepartment of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
TitleTrehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-1
AbstractSaccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.
Full-Text
Key_wordTrehalose, probiotics, reactive oxygen species, programmed cell death
References
  1. Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. 2013. Health benefits of probiotics: a review. ISRN Nutr. 2013: 481651.
    Pubmed CrossRef Pubmed Central
  2. Czerucka D, Piche T, Rampal P. 2007. Review article: yeast as probiotics -- Saccharomyces boulardii. Aliment. Pharmacol. Ther. 26: 767-778.
    Pubmed CrossRef
  3. Dinleyici EC, Eren M, Ozen M, Yargic ZA, Vandenplas Y. 2012. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin. Biol. Ther. 12: 395-410.
    Pubmed CrossRef
  4. Pozzoni P, Riva A, Bellatorre AG, Amigoni M, Redaelli E, Ronchetti A, et al. 2012. Saccharomyces boulardii for the prevention of antibiotic-associated diarrhea in adult hospitalized patients: a single-center, randomized, double-blind, placebocontrolled trial. Am. J. Gastroenterol. 107: 922-931.
    Pubmed CrossRef
  5. Sudha MR, Bhonagiri S, Kumar MA. 2012. Oral consumption of potential probiotic Saccharomyces boulardii strain Unique 28 in patients with acute diarrhoea: a clinical report. Benef. Microbes 3: 145-150.
    Pubmed CrossRef
  6. Surawicz CM, McFarland LV, Greenberg RN, Rubin M, Fekety R, Mulligan ME, et al. 2000. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin. Infect. Dis. 31: 1012-1017.
    Pubmed CrossRef
  7. Tung JM, Dolovich LR, Lee CH. 2009. Prevention of Clostridium difficile infection with Saccharomyces boulardii: a systematic review. Can. J. Gastroenterol. 23: 817-821.
    Pubmed CrossRef Pubmed Central
  8. Correa NB, Penna FJ, L ima FM, Nicoli JR, Filho L A. 2011. Treatment of acute diarrhea with Saccharomyces boulardii in infants. J. Pediatr. Gastroenterol. Nutr. 53: 497-501.
    Pubmed CrossRef
  9. Dinleyici EC, Eren M, Yargic ZA, Dogan N, Vandenplas Y. 2009. Clinical efficacy of Saccharomyces boulardii and metronidazole compared to metronidazole alone in children with acute bloody diarrhea caused by amebiasis: a prospective, randomized, open label study. Am. J. Trop. Med. Hyg. 80: 953-955.
    CrossRef
  10. Kelesidis T, Pothoulakis C. 2012. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap. Adv. Gastroenterol. 5: 111-125.
    Pubmed CrossRef Pubmed Central
  11. McFarland LV. 2010. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 16: 2202-2222.
    Pubmed CrossRef Pubmed Central
  12. Vandenplas Y, Brunser O, Szajewska H. 2009. Saccharomyces boulardii in childhood. Eur. J. Pediatr. 168: 253-265.
    Pubmed CrossRef
  13. Jamieson DJ. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14: 1511-1527.
    CrossRef
  14. Mariani D, Mathias CJ, da Silva CG, Herdeiro Rda S, Pereira R, Panek AD, et al. 2008. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Rep. 13: 246-254.
    Pubmed CrossRef
  15. Perrone GG, Tan SX, Dawes IW. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368.
    Pubmed CrossRef
  16. Jamieson DJ. 1995. The effect of oxidative stress on Saccharomyces cerevisiae. Redox Rep. 1: 89-95.
    Pubmed CrossRef
  17. Benaroudj N, Lee DH, Goldberg AL. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276: 24261-24267.
    Pubmed CrossRef
  18. Herdeiro RS, Pereira MD, Panek AD, Eleutherio EC. 2006. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim. Biophys. Acta 1760: 340-346.
    Pubmed CrossRef
  19. Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M. 2018. Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr. Microbiol. 75: 519-530.
    Pubmed CrossRef
  20. Cascio V, Gittings D, Merloni K, Hurton M, Laprade D, Austriaco N. 2013. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death. BMC Microbiol. 13: 35.
    Pubmed CrossRef Pubmed Central
  21. Dani C, Bonatto D, Salvador M, Pereira MD, Henriques JA, Eleutherio E. 2008. Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. J. Agric. Food Chem. 56: 4268-4272.
    Pubmed CrossRef
  22. Martorell P, Forment JV, de Llanos R, Monton F, Llopis S, Gonzalez N, et al. 2011. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. J. Agric. Food Chem. 59: 2077-2085.
    Pubmed CrossRef
  23. Mendes V, Vilaca R, de Freitas V, Ferreira PM, Mateus N, Costa V. 2015. Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxid. Med. Cell. Longev. 2015: 782504.
    Pubmed CrossRef Pubmed Central
  24. Luo Y, Li WM, Wang W. 2008. Trehalose: Protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ. Exp. Bot. 63: 378-384.
    CrossRef
  25. Gao Z, Wang H, Zhang B, Wu X, Zhang Y, Ge P, Chi G, Liang J. 2018. Trehalose inhibits H2O2-induced autophagic death in dopaminergic SH-SY5Y cells via mitigation of ROSdependent endoplasmic reticulum stress and AMPK activation. Int. J. Med. Sci. 15: 1014–1024.
    Pubmed CrossRef Pubmed Central
  26. Mazzoni C, Falcone C. 2008. Caspase-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1320-1327.
    Pubmed CrossRef
  27. Millard PJ, Roth BL, Thi HP, Yue ST, Haugland RP. 1997. Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl. Environ. Microbiol. 63: 2897-2905.
    Pubmed CrossRef Pubmed Central
  28. Madeo F, Frohlich E, L igr M, Grey M, Sigrist SJ, Wolf DH, et al. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145: 757-767.
    Pubmed CrossRef Pubmed Central
  29. Farrugia G, Balzan R. 2012. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2: 64.
    Pubmed CrossRef Pubmed Central
  30. Izawa S, Inoue Y, Kimura A. 1995. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368: 73-76.
    CrossRef
  31. Madeo F, Frohlich E, Frohlich KU. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734.
    Pubmed CrossRef Pubmed Central
  32. Madeo F, Carmona-Gutierrez D, Ring J, Buttner S, Eisenberg T, Kroemer G. 2009. Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem. Biophys. Res. Commun. 382: 227-231.
    Pubmed CrossRef
  33. Burhans WC, Weinberger M, Marchetti MA, Ramachandran L, D’Urso G, Huberman JA. 2003. Apoptosis-like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227-243.
    Pubmed CrossRef
  34. Lefevre S, Sliwa D, Auchere F, Brossas C, Ruckenstuhl C, Boggetto N, et al. 2012. The yeast metacaspase is implicated in oxidative stress response in frataxin-deficient cells. FEBS Lett. 586: 143-148.
    Pubmed CrossRef
  35. Treml J, Smejkal K. 2016. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 15: 720-738.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd