Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-10: 1675~1681

AuthorYoung Ha Kim, Ho Kim
Place of dutyDivision of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
TitleClostridium difficile Toxin A Upregulates Bak Expression through PGE2 Pathway in Human Colonocytes
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-10
AbstractClostridium difficile toxin A is known to cause colonic epithelial cell apoptosis, which is considered the main causative event that triggers inflammatory responses in the colon, reflecting the concept that the essential role of epithelial cells in the colon is to form a physical barrier in the gut. We previously showed that toxin A-induced colonocyte apoptosis and subsequent inflammation were dependent on prostaglandin E2 (PGE2) produced in response to toxin A stimulation. However, the molecular mechanism by which PGE2 mediates cell apoptosis in toxin A-exposed colonocytes has remained unclear. Here, we sought to identify the signaling pathway involved in toxin A-induced, PGE2-mediated colonocyte apoptosis. In non-transformed NCM460 human colonocytes, toxin A exposure strongly upregulated expression of Bak, which is known to form mitochondrial outer membrane pores, resulting in apoptosis. RT-PCR analyses revealed that this increase in Bak expression was attributable to toxin A-induced transcriptional upregulation. We also found that toxin A upregulation of Bak expression was dependent on PGE2 production, and further showed that this effect was recapitulated by an EP1 receptor agonist, but not by agonists of other EP receptors. Collectively, these results suggest that toxin A-induced cell apoptosis involves PGE2- upregulation of Bak through the EP1 receptor.
Full-Text
Key_wordClostridium difficile, toxin A, epithelial cells, apoptosis, prostaglandin E2 (PGE2), Bak
References
  1. Kim H, Rhee SH, Pothoulakis C, Lamont JT. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886.
    Pubmed CrossRef
  2. Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, et al. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves pp.53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888.
    Pubmed CrossRef
  3. Kim H, Rhee SH, Kokkotou E, Na X, Savidge T, Moyer MP, et al. 2005. Clostridium difficile toxin a regulates inducible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245.
    Pubmed CrossRef
  4. He D, Sougioultzis S, Hagen S, Liu J, Keates S, Keates AC, et al. 2002. Clostridium difficile toxin A triggers human colonocyte IL-8 release via mitochondrial oxygen radical generation. Gastroenterology 122: 1048-1057.
    Pubmed CrossRef
  5. Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2016. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223.
    Pubmed CrossRef Pubmed Central
  6. Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Lacy DB. 2016. Clostridium difficile toxins TcdA and TcdB cause colonic tissue damage by distinct mechanisms. Infect. Immun. 84: 2871-2877.
    Pubmed CrossRef Pubmed Central
  7. Kim DH, Lee IH, Nam ST, Nam HJ, Kang JK, Seok H, et al. 2014. Effect of antisera from Clostridium difficile-infected mice on toxin-A-induced colonic epithelial cell death signaling. J. Microbiol. Biotechnol. 24: 696-703.
    Pubmed CrossRef
  8. Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, et al. 2000. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J. Biol. Chem. 275: 9725-9733.
    Pubmed CrossRef
  9. Robb CT, McSorley HJ, Lee J, Aoki T, Yu C, Crittenden S, et al. 2018. Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis. J. Allergy Clin. Immunol. 141: 152-162.
    Pubmed CrossRef Pubmed Central
  10. Liang X, Wang Q, Shi J, Lokteva L, Breyer RM, Montine TJ, et al. 2008. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann. Neurol. 64: 304-314.
    Pubmed CrossRef Pubmed Central
  11. Huang WT, Niu KC, Chang CK, Lin MT, Chang CP. 2008. Curcumin inhibits the increase of glutamate, hydroxyl radicals and PGE2 in the hypothalamus and reduces fever during LPS-induced systemic inflammation in rabbits. Euro. J. Pharm. 593: 105-111.
    Pubmed CrossRef
  12. Turull N, Queralt J. 2000. Effect of the COX-2 selective inhibitor l-745,337 on inflammation and organ prostaglandin E2 (PGE2) levels in adjuvant arthritic rats. Inflammation 24: 533-545.
    Pubmed CrossRef
  13. Lalier L, Pedelaborde F, Braud C, Menanteau J, Vallette FM, Olivier C. 2011. ncrease in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell. BMC Cancer 11: 153.
    Pubmed CrossRef Pubmed Central
  14. Wu L, Wang Q, Liang X, Andreasson K. 2007. Divergent effects of prostaglandin receptor signaling on neuronal survival. Neurosci. Lett. 421: 253-258.
    Pubmed CrossRef Pubmed Central
  15. Huang SK, White ES, Wettlaufer SH, Grifka H, Hogaboam CM, Thannickal VJ, et al. 2009. Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J. 23: 4317-4326.
    Pubmed CrossRef Pubmed Central
  16. Pica F, Franzese O, D'Onofrio C, Bonmassar E, Favalli C, Garaci E. 1996. Prostaglandin E2 induces apoptosis in resting immature and mature human lymphocytes: a c-Mycdependent and Bcl-2-independent associated pathway. J. Pharmacol. Exp. Ther. 277: 1793-1800.
  17. Krajewska M, Fenoglio-Preiser CM, Krajewski S, Song K, Macdonald JS, Stemmerman G, et al. 1996. Immunohistochemical analysis of Bcl-2 family proteins in adenocarcinomas of the stomach. Am. J. Pathol. 149: 1449-1457.
  18. Krajewski S, Krajewska M, Reed JC. 1996. Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 56: 2849-2855.
  19. Pataer A, Fang B, Yu R, Kagawa S, Hunt KK, McDonnell TJ, et al. 2000. Adenoviral Bak overexpression mediates caspasedependent tumor killing. Cancer Res. 60: 788-792.
  20. Hass R, Busche R, Luciano L, Reale E, Engelhardt WV. 1997. Lack of butyrate is associated with induction of Bax and subsequent apoptosis in the proximal colon of guinea pig. Gastroenterology 112: 875-881.
    Pubmed CrossRef
  21. Westphal D, Dewson G, Czabotar PE, Kluck RM. 2011. Molecular biology of Bax and Bak activation and action. Biochimica et Biophysica Acta 1813: 521-531.
    Pubmed CrossRef
  22. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, et al. 1995. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374: 736-739.
    Pubmed CrossRef
  23. Sullivan NM, Pellett S, Wilkins TD. 1982. Purification and characterization of toxins A and B of Clostridium difficile. Infect. Immun. 35: 1032-1040.
  24. Nakayama H, Yokoi H, Fujita J. 1992. Quantification of mRNA by non-radioactive RT-PCR and CCD imaging system. Nucleic Acids Res. 20: 4939.
    Pubmed CrossRef Pubmed Central
  25. Yoon IN, Hwang JS, Lee JH, Kim H. 2019. The antimicrobial peptide CopA3 inhibits Clostridium difficile toxin a-induced viability loss and apoptosis in neural cells. J. Microbiol. Biotechnol. 29: 30-36.
    Pubmed CrossRef
  26. Reimund JM, Wittersheim C, Dumont S, Muller CD, Kenney JS, Baumann R, et al. 1996. Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn’s disease. Gut 39: 684-689.
    Pubmed CrossRef Pubmed Central
  27. Martinou I, Desagher S, Eskes R, Antonsson B, Andre E, Fakan S, et al. 1999. The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J. Cell Biol. 144: 883-889.
    Pubmed CrossRef Pubmed Central
  28. Lim ML, Lum MG, Hansen TM, Roucou X, Nagley P. 2002. On the release of cytochrome c from mitochondria during cell death signaling. J. Biomed. Sci. 9: 488-506.
    Pubmed CrossRef
  29. Priault M, Chaudhuri B, Clow A, Camougrand N, Manon S. 1999. Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Euro. J. Biochem. 260: 684-691.
    Pubmed CrossRef
  30. Heimlich G, McKinnon AD, Bernardo K, Brdiczka D, Reed JC, Kain R, et al. 2004. Bax-induced cytochrome c release from mitochondria depends on alpha-helices-5 and -6. Biochem. J. 378: 247-255.
    Pubmed CrossRef Pubmed Central
  31. Thornborrow EC, Manfredi JJ. 2001. The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter. J. Biol. Chem. 276: 15598-15608.
    Pubmed CrossRef
  32. Baltaziak M, Koda M, Wincewicz A, Sulkowska M, Kanczuga-Koda L, Sulkowski S. 2009. Relationships of P53 and Bak with EPO and EPOR in human colorectal cancer. Anticancer Res. 29: 4151-4156.
  33. Fortuno MA, Zalba G, Ravassa S, D'Elom E, Beaumont FJ, Fortuno A, et al. 1999. p53-mediated upregulation of BAX gene transcription is not involved in Bax-alpha protein overexpression in the left ventricle of spontaneously hypertensive rats. Hypertension 33: 1348-1352.
    Pubmed CrossRef
  34. Kong X, Xu P, Cai WJ, Wang HG, Li BB, Huang GL, et al. 2018. ZBP-89 and Sp1 contribute to Bak expression in hepatocellular carcinoma cells. BMC Cancer 18: 419.
    Pubmed CrossRef Pubmed Central
  35. Asboth G, Phaneuf S, Europe-Finner GN, Toth M, Bernal AL. 1996. Prostaglandin E2 activates phospholipase C and elevates intracellular calcium in cultured myometrial cells:involvement of EP1 and EP3 receptor subtypes. Endocrinology 137: 2572-2579.
    Pubmed CrossRef
  36. Rojas A, Gueorguieva P, Lelutiu N, Quan Y, Shaw R, Dingledine R. 2014. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus. Neurobiol. Dis. 70: 74-89.
    Pubmed CrossRef Pubmed Central
  37. Irie A, Sugimoto Y, Namba T, Asano T, Ichikawa A, Negishi M. 1994. The C-terminus of the prostaglandin-E-receptor EP3 subtype is essential for activation of GTP-binding protein. Euro. J. Biochem. 224: 161-166.
    Pubmed CrossRef
  38. Soares AS, Costa VM, Diniz C, Fresco P. 2015. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin. Pharmacol. Toxicol. 116: 25-36.
    Pubmed CrossRef
  39. Panaretakis T, Laane E, Pokrovskaja K, Bjorklund AC, Moustakas A, Zhivotovsky B, et al. 2005. Doxorubicin requires the sequential activation of caspase-2, protein kinase Cdelta, and c-Jun NH2-terminal kinase to induce apoptosis. Mol. Biol. Cell 16: 3821-3831.
    Pubmed CrossRef Pubmed Central
  40. Meinhardt G, Roth J, Totok G. 2000. Protein kinase C activation modulates pro- and anti-apoptotic signaling pathways. Euro. J. Cell Biol. 79: 824-833.
    Pubmed CrossRef
  41. Chen X, Lv Q, Ma J, Liu Y. 2018. PLC gamma2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling. Cell Prolif. 51: e12437.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd