Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-9: 1424~1433

AuthorAdi Setyo Purnomo, Diana Maulianawati, Ichiro Kamei
Place of dutyDepartment of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
TitleRalstonia pickettii enhance the DDT biodegradation by Pleurotus eryngii
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-9
AbstractDDT is a hydrophobic organic pollutant, which can be bio-accumulated in nature and have adverse consequences on the physical condition of humans and animals. This study investigated the relationship between the white-rot fungus Pleurotus eryngii and biosurfactantproducing bacterium Ralstonia pickettii associated with the degradation of DDT. The effects of R. pickettii on fungal development were examined using in vitro confrontation assay on a potato dextrose agar (PDA) medium. R. pickettii culture was added to the P. eryngii culture at 1, 3, 5, 7, and 10 ml (1 ml ≈ 1.44 × 1013 CFU). After 7 d incubation, about 43% of the initial DDT (12.5 μM) was degraded by the P. eryngii culture only. The augmentation of 7 ml of R. pickettii culture revealed a more highly optimized synergism with DDT degradation being approximately 78% and the ratio of optimization 1.06. According to the confrontational assay, R. pickettii promoted the growth of P. eryngii towards the bacterial colony, with no direct contact between the bacterial cells and mycelium (0.71 cm/day). DDD (1,1-dichloro-2,2-bis(4- chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1- chloro-2,2-bis(4-chlorophenyl) ethylene) were identified as metabolic products, indicating that the R. pickettii could enhance the DDT biodegradation by P. eryngii.
Full-Text
Key_wordBiodegradation, DDT, bacteria, white-rot fungi, Pleurotus eryngii, Ralstonia pickettii
References
  1. Sudaryanto A, Takahashi S, Tanabe S. 2007. Persistent toxic substances in the environment of Indonesia. Dev. Environ. Sci. 7: 587-627.
    CrossRef
  2. Kinuthia M, Hamadi IB, Anne WM, Ciira K, Muniru KT. 2010. Degradation of dichlorodiphenyltrichloroethane (DDT) by bacterial isolates from cultivated and uncultivated soil. Afr. J. Microbiol. Res. 4: 185-196.
  3. Tsakiris IN, Goumenou G, Tzatzarakis MN, Alegakis AK, Tsitsimpikou C, Ozcagli E, et al . 2015. Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food Chem. Toxicol. 75: 156-165.
    Pubmed CrossRef
  4. Chu W. 1999. Photodechlorination mechanism of DDT in a UV/Surfactant system. Environ. Sci. Technol. 33: 421-425.
    CrossRef
  5. Matsunaga A, Yasuhara A. 2005. Dechlorination of polychlorinated organic compounds by electrochemical reduction with naphthalene radical anion as mediator. Chemosphere 59: 1487-1496.
    Pubmed CrossRef
  6. Sayles GD, You GR, Wang MX, Kuperferle MJ. 1997. DDT, DDD and DDE Dechlorination by zero-valent iron. Environ. Sci. Technol. 31: 3448-3454.
    CrossRef
  7. Kamei I, Suhara H, Kondo R. 2005. Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl. Microbiol. Biotechnol. 69: 358-366.
    Pubmed CrossRef
  8. Kamei I, Sonoki S, Haraguchi K, Kondo R. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by whiterot fungus, Phlebia brevispora. Appl. Microbiol. Biotechnol. 73: 932-940.
    Pubmed CrossRef
  9. Kamei I, Takagi K, Kondo R. 2011. Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J. Wood Sci. 57: 317-322.
    CrossRef
  10. Aust SD. 1990. Degradation of Environmental pollutants by Phanerochaete chrysosporium. Microbiol. Ecol. 20: 197-209.
    Pubmed CrossRef
  11. Pointing SB. 2001. Feasibility of bioremediation by white rot fungi. Appl. Microbiol. Biotechnol. 57: 20-33.
    Pubmed CrossRef
  12. Reddy CA. 1995. The potential for white rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320-328.
    CrossRef
  13. Reddy CA, Mathew Z. 2001. Bioremediation potential of white rot fungi. pp. 52-78. In G add GM (ed.), F ungi in bioremediation. Cambridge University Press, London.
    CrossRef
  14. Bumpus JA, Aust SD. 1987. Biodegradation of DDT [1,1,1trichloro-2,2-bis(4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53: 2011-2008.
  15. Purnomo A S, M ori T , K amei I , N ishii T , Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT contaminated soil. Int. Biodet. Biodeg. 64: 397-402.
    CrossRef
  16. Purnomo AS, Mori T, Kamei I, Kondo R. 2011. Basic studies and applications on bioremediation of DDT: A review. Int. Biodet. Biodeg. 65: 921-930.
    CrossRef
  17. Purnomo AS, Ashari K, Hermansyah F. 2017. Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J. Microbiol. Biotechnol. 27: 1306-1315.
    Pubmed CrossRef
  18. Arisoy M. 1998. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol. 60: 872-876.
    Pubmed CrossRef
  19. Purnomo AS, Fajriah 2017. Pengaruh penambahan Bacillus subtilis pada biodegradasi DDT Oleh Phlebia brevispora. Akta Kim. Indones. 2: 58-65.
    CrossRef
  20. Xiao P, Mori T, Kamei I, Kondo R. 2011. A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22: 859-867.
    Pubmed CrossRef
  21. Grizca BE, Setyo PA. 2018. Abilities of co-cultures of whiterot fungus Ganoderma lingzhi and bacteria Bacillus subtilis on Biodegradation DDT. J. Physics Conf. Series 1095: 102015.
    CrossRef
  22. Purnomo AS, Kamei I, Kondo R. 2008. Degradation of 1,1,1trichloro-2,2-bis(4-chlorophenyl) ethane) (DDT) by brownrot fungi. J. Biosci. Bioeng. 105: 614-621.
    Pubmed CrossRef
  23. Purnomo AS, Mori T, Kondo R. 2010. Involvement of fenton reaction in DDT degradation by brown rot fungi. Int. Biodeterior. Biodegradation 64: 560-565.
    CrossRef
  24. Purnomo A S, M ori T , Takagi K , K ondo R . 2 011. Bioremediation of DDT contaminated soil using brown-rot fungi. Int. Biodeterior. Biodegradation 65: 691-695.
    CrossRef
  25. Kamei I, Yoshida T, Enami D, Meguro S. 2012. Coexisting Curtobacterium bacterium promotes growth of white-rot fungus Stereum sp. Curr. Microbiol. 64: 173-178.
    Pubmed CrossRef
  26. Clausen CA. 1996. Bacterial association with decaying wood: A review. Int. Biodeterior. Biodegradation. 37: 101-107.
    CrossRef
  27. Kukor JJ, Olsen RH. 1992. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PK01. J. Bacteriol. 174: 6518-6526.
  28. Massol-Deya A, Weller R, Rios-Hernandez L, Zhou JZ, Hickey RF, Tiedje JM. 1997. Succession and convergence of biofilm communities in fixed-film reactors aromatic hydrocarbons in groundwater. Appl. Environ. Microbiol. 63: 270-27.
  29. Ryan MP, Pembroke JT, Adles C. 2007. Ralstonia pickettii in environmental biotechnology: potential and applications. J. Appl. Microbiol. 103: 754-64.
    Pubmed CrossRef
  30. McClay K, Fox BG, Steffan RJ. 1996. Chloroform mineralization by toluene oxidizing bacteria. Appl. Environ. Microbiol. 62: 2716-2722.
  31. Kiyohara H, Hatta T, Ogawa Y, Kakuda T, Yokoyama H, Takizawa N. 1992. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl. Environ. Microbiol. 58: 1276-1283.
  32. Yabannavar AV, Zylstra GJ. 1995. Cloning and characterization of the fenes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105. Appl. Environ. Microbiol. 61: 4284-4290.
  33. Sharma OP, Dawra RK, Datta AK, Kanwar SS. 1997. Biodegradation of Lantadene A, The Pentacyclic Triterpenoid Hepatotoxin by Pseudomonas pickettii. Lett. Appl. Microbiol. 24: 229-232.
    Pubmed CrossRef
  34. Kahng HY, Byrne AM, Olsen RH, Kukor JJ. 2000. Characterization and Role of tbuX in Utilization of Toluene by Ralstonia pickettii PKO1. J. Bacteriol. 182: 1232-1242.
    Pubmed CrossRef Pubmed Central
  35. Setyo PA, Dwi RH, Sri F, Sulistyo PH, Ichiro K. 2018. Effects of bacterium Ralstonia pickettii addition on DDT biodegradation by Daedalea dickinsii. Res. J. Chem. Environ. 22(Special issue II): 151-156.
  36. Purnomo AS. 2017. Microbe-assisted degradation of aldrin and dieldrin. In Singh SN (ed.), Microbe-Induced Degradation of Pesticides, pp. 1-22. 1st edn. Springer Nature, Switzerland.
    CrossRef
  37. Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I. 2017. Biodegradation of aldrin and dieldrin by the white-rot fungus Pleurotus ostreatus. Curr. Microbiol. 74: 320-324.
    Pubmed CrossRef
  38. Rizqi HD, Purnomo AS. 2017. The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J. Microbiol. Biotechnol. 33: 92.
    Pubmed CrossRef
  39. Purnomo AS, Koyama F, Mori T, Kondo R. 2010. DDT degradation potential of cattle manure compost. Chemosphere 80: 619-624.
    Pubmed CrossRef
  40. Purnomo AS, Mori T, Putra SR, Kondo R. 2013. Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int. Biodeterior. Biodegradation 82: 40-44.
    CrossRef
  41. Wahyuni S, Suhartono MT, Khaeruni A, Purnomo AS, Asranudin, Holilah, et al. 2016. Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production. Asian J. Chem. 28: 2731-2736.
    CrossRef
  42. Wahyuni S, Khaeruni A, Purnomo AS, Asranudin, Holilah, Fatahu 2017. Characterization of mannanase isolated from corncob waste bacteria. Asian J. Chem. 29: 1119-1120.
    CrossRef
  43. Sariwati A, Purnomo, AS, Kamei I. 2017. Abilities of cocultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation DDT. Curr. Microbiol. 74: 1068-1069.
    Pubmed CrossRef
  44. Sariwati A, and Purnomo, AS. 2018. The effect of Pseudomonas aeruginosa addition on 1,1,1 Trichloro 2,2 bis (4 chlorophenyl) ethane DDT biodegradation by brown-rot fungus Fomitopsis pinicola. Indon. J. Chem. 18: 75-81.
    CrossRef
  45. Purnomo AS, Putra SR, Shimizu K, Kondo R. 2014. Biodegradation of heptachlor and heptachlor epoxidecontaminated soils by white-rot fungal inocula. Environ. Sci. Pollut. Res. 21: 11305-11312.
    Pubmed CrossRef
  46. Kamei I. 2017. Co-culturing effects by coexisting bacteria on wood degradation by Trametes versicolor. Curr. Microbiol. 74: 125-131.
    Pubmed CrossRef
  47. Mille-Lindblom C, Tranvik L. 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbiol. Ecol. 45: 73-182.
    Pubmed CrossRef
  48. Hadibarata T, Kristanti RA. 2014. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorine. Fungal Biol. 118: 222-227.
    Pubmed CrossRef
  49. Bonfante P, Anca IA. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63: 363-383.
    Pubmed CrossRef
  50. Frey-Klett P, Garbaye J, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176: 22-36.
    Pubmed CrossRef
  51. Manna RN, Dybala-Defratyka A. 2013. Insights into the elimination mechanisms employed for the degradation of different hexachlorocyclohexane isomers using kinetic isotope effects and docking studies. J. Phys. Org. Chem. 26: 797-804.
    CrossRef
  52. Ramadhania NR, Purnomo AS, Fatmawati S. 2018. Antibacterial activities of Syzygium polyanthum wight leaves. AIP Conf. Proc. 2049: 020024.
    CrossRef
  53. Ramadhania NR, Harun F, Purnomo AS, Fatmawati S. 2019. Anti-oxidant and anti-bacterial activities of Anthurium plowmanii leaves extracts. Mal. J. Fund. Appl. Sci. 15: 194-199.
    CrossRef
  54. Johansson J, Paul LR, Finlay RD. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48: 1-13.
    Pubmed CrossRef
  55. Kataoka R, Futai K. 2009. A new mycorrhizal helper bacterium, ralstonia species, in the ectomycorrhizal symbiosis between Pinus thunbergii and Suillus granulatus. Biol. Fertil. Soils 45: 315-320.
    CrossRef
  56. Chang BV, Chang YM. 2016. Biodegradation of toxic chemicals by Pleurotus eryngii in submerged fermentation and solid-state fermentation. J. Microbiol. Immunol. Infect. 49: 175-181.
    Pubmed CrossRef
  57. Varela E, Guillen F, Martinez AT, Martinez MJ. 2001. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta (BBA) - Protein Struc. Mol. Enzymol. 1546: 107-113.
    CrossRef
  58. Guillén F, Martínez AT, Martínez MJ, Evans CS. 1994. Hydrogen-peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Appl. Microbiol. Biotechnol. 41: 465-470.
    CrossRef
  59. Ferreira P, Medina M, Guillén F, Martínez MJ, Van Berkel WJH, Martínez AT. 2005. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem. J. 389: 731-738.
    Pubmed CrossRef Pubmed Central
  60. Plaza GA, Wypych J, Berry C, Brigmon RL. 2007. Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World J. Microbiol. Biotechnol. 23: 533-542.
    CrossRef
  61. Płaza GA, Łukasik K, Wypych J, Jawecki N, Berry C, Brigmo RL. 2008. Biodegradation of crude oil and distillation products by biosurfactant-producing bacteria. Pol. J. Environ. Stud. 17: 87-94.
  62. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, M anresa A . 2 001. P hysicochemical a nd a ntimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371.
    CrossRef
  63. Teh ZC, Hadibarata T. 2014. Enhanced degradation of pyrene and metabolite identification by Pleurotus eryngii F032. Water Air Soil Pollut. 225: 1909.
    CrossRef
  64. Baschien C, Rode G, Böckelmann U, Götz P, Szewzyk U. 2009. Interactions between hyphosphere-associated bacteria and the Fungus Cladosporium herbarum on aquatic leaf litter. Microbiol. Ecol. 58: 642-650.
    Pubmed CrossRef
  65. Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I. 1999. Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl. Microbiol. Biotechnol. 65: 1428-1434.
  66. Steinberg JP, Burd EM. 2005. Mandell, Douglas, and Bennets Principle and Practice of Infectious Diseases. 8th Edition. Elsevier Inc: Philadelphia.
  67. Subba-Rao RV, Alexander M. 1985. Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its breakdown products. Appl. Environ. Microbiol. 49: 509-516.
  68. Baxter GJ, Graham AB, Lawrence JR, Wiles J, Peterson JR. 2001. Salicylic acids in soups prepared from organically and non-organically grown vegetables. Eur. J. Nutr. 40: 289-292.
    Pubmed CrossRef
  69. Foght J, April T, Biggar K, Aisalbie J. 2010. Bioremediation of DDT-contaminated soils: a review. Bioremiat. J. 5: 225-246.
    CrossRef
  70. Laili K, Fatati N, Inneke PF, Setyo PA, Mardi S, Taslim E, et al. 2018. In vitro antioxidant activity of Sonneratia ovata backer extract. Res. J. Chem. Environ. 22(Special issue II): 146-150.
  71. Brittain DRB, Pandey R, Kumari K, Sharma P, Pandey G, Lal R, et al. 2011. Competing SN2 and E2 reaction pathways for hexachlorocyclohexane degradation in the gas phase, solution and enzymes. Chem. Commun. 47: 976-978.
    Pubmed CrossRef
  72. Halasa AF, Massie JM, Ceresa RJ. 2005. The Chemical Modification of Polymers. pp. 497-528. In: Science and Technology of Rubber (Third Edition). Academic Press, New York.
    CrossRef
  73. Zhao Y , Y i X , L i M , L iu L, M a W . 2 010. B iodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chinese J. Chem. Eng. 18: 486-492.
    CrossRef
  74. Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ. 2010. Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int. J. Environ. Sci. Technol. 7: 359-366.
    CrossRef
  75. Massé R, Lalanne D, Messier F, Sylvestre M. 1989. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry. J. Mass Spectrom. 18: 741-752.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd