Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2020 ; Vol.30-2: 196~205

AuthorZhu Si-Yuan, Xu Yan, Yu Xiao-Wei
Place of dutyKey Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
TitleImproved Homologous Expression of the Acidic Lipase from Aspergillus niger
PublicationInfo J. Microbiol. Biotechnol.2020 ; Vol.30-2
AbstractIn this study, the acidic lipase from Aspergillus niger (ANL) was homologously expressed in A. niger. The expression of ANL was significantly improved by the expression of the native ANL with the introns, the addition of the Kozak sequence and the optimization of the signal sequences. When the cDNA sequence of ANL fused with the glaA signal was expressed under the gpdA promoter in A. niger, no lipase activity could be detected. We then tried to improve the expression by using the full-length ANL gene containing three introns, and the lipase activity in the supernatant reached 75.80 U/ml, probably as a result of a more stable mRNA structure. The expression was further improved to 100.60 U/ml by introducing a Kozak sequence around the start codon due to a higher translation efficiency. Finally, the effects of three signal sequences including the cbhI signal, the ANL signal and the glaA signal on the lipase expression were evaluated. The transformant with the cbhI signal showed the highest lipase activity (314.67 U/ml), which was 1.90-fold and 3.13-fold higher than those with the ANL signal and the glaA signal, respectively. The acidic lipase was characterized and its highest activity was detected at pH 3.0 and a temperature of 45ºC. These results provided promising strategies for the production of the acidic lipase from A. niger.
Full-Text
Supplemental Data
Key_wordAspergillus niger, acidic lipase, expression, characterization, Agrobacterium-mediated transformation
References
  1. Schuster E, Dunn-Coleman N, Frisvad JC, van Dijck PWM. 2002. On the safety of Aspergillus niger - A review. Appl. Microbiol. Biotechnol. 59: 426-435.
    Pubmed CrossRef
  2. Cairns TC, Nai C, Meyer V. 2018. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 5: 13.
    Pubmed CrossRef Pubmed Central
  3. Steiniger C, Hoffmann S, Mainz A, Kaiser M, Voigt K, Meyer V, et al. 2017. Harnessing fungal nonribosomal cyclodepsipeptide synthetases for mechanistic insights and tailored engineering. Chem. Sci. 8: 7834-7843.
    Pubmed CrossRef Pubmed Central
  4. Michael W, Cherry L, Victoria DC, Fox BP, Fox JA, Wong DL, et al. 2004. Characterization of humanized antibodies secreted by Aspergillus niger. Appl. Environ. Microbiol. 70: 2567-2576.
    Pubmed CrossRef Pubmed Central
  5. Punt PJ. 2002. Filamentous fungi as cell factories for protein production. Trends Biotechnol. 20: 200-206.
    CrossRef
  6. Magaña-Ortíz D, Fernández F, Loske AM, Gómez-Lim MA. 2018. Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens. Curr. Microbiol. 75: 40-48.
    Pubmed CrossRef
  7. Guo Y, Zheng P, Sun J. 2010. Aspergillus niger as a potential cellular factory: prior knowledge and key technology. Sheng Wu Gong Cheng Xue Bao 26: 1410-1418.
  8. Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. 2015. Heterologous expression of cellobiohydrolases in filamentous fungi – an update on the current challenges, achievements and perspectives. Process Biochem. 50: 211-220.
    CrossRef
  9. Krasevec N, van de Hondel C, Komel R. 2000. Expression of human lymphotoxin alpha in Aspergillus niger. Pflugers Arch. 440: R83-R85.
    Pubmed CrossRef
  10. Svetina M, Krasevec N, Gaberc-Porekar V, Komel R. 2000. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger. J. Biotechnol. 76: 245-251.
    CrossRef
  11. Roberts IN, Jeenes DJ, Mackenzie DA, Wilkinson AP, Sumner IG, Archer DB. 1992. Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122: 155-161.
    CrossRef
  12. Zhang H, Yan JN, Zhang H, Qi LT, Xu Y, Zhang YY, et al. 2018. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in A. niger. FEMS Microbiol. Lett. 1: 365.
    CrossRef
  13. Liu F, Wang B, Ye Y, Pan L. 2017. High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host. Protein Expr. Purif. 144: 71-75.
    Pubmed CrossRef
  14. Zhang H, Wang S, Zhang XX, Ji W, Song FP, Zhao Y, et al. 2016. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background. Microb. Cell Fact. 15: 11.
    Pubmed CrossRef Pubmed Central
  15. Kamaruddin N, Storms R, Mahadi NM, Illias RM, Abu Bakar FD, Murad AMA. 2018. Reduction of extracellular proteases increased activity and stability of heterologous protein in Aspergillus niger. Arab. J. Sci. Eng. 43: 3327-3338.
    CrossRef
  16. Zhang XF, Ai YH, Xu Y, Yu XW. 2019. High-level expression of Aspergillus niger lipase in Pichia pastoris: characterization and gastric digestion in vitro. Food Chem. 274: 305-313.
    Pubmed CrossRef
  17. Saxena RK, Davidson WS, Sheoran A, Giri B. 2003. Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem. 39: 239-247.
    CrossRef
  18. Xia J - l, H uang B , Nie Z- y, W ang W. 2 011. Production and characterization of alkaline extracellular lipase from newly isolated strain Aspergillus awamori HB-03. J. Cent. South Univ. 18: 1425.
    CrossRef
  19. Shu ZY, Yan YJ, Yang JK, Xu L. 2007. Aspergillus niger lipase: gene cloning, over-expression in Escherichia coli and in vitro refolding. Biotechnol. Lett. 29: 1875-1879.
    Pubmed CrossRef
  20. Yang J, Yan X, Zhang Z, Jiang X, Yan Y. 2009. Two-step synthesis of the full length Aspergillus niger lipase gene lipA leads to high-level expression in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 25: 381-387.
  21. Kozak M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283-292.
    CrossRef
  22. Ahangarzadeh S, Daneshvar MH, Rajabi-Memari H, Galehdari H, Alamisaied K. 2012. Cloning, transformation and expression of human interferon α2b Gene in tobacco plant (Nicotiana tabacum cv. xanthi). Jundishapur J. Nat. Pharm. Prod. 7: 111-116.
    Pubmed CrossRef Pubmed Central
  23. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  24. Xu Y, Wang YH, Liu TQ, Zhang H, Zhang H, Li J. 2018. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger. Biotechnol. Lett. 40: 949-955.
    Pubmed CrossRef
  25. Li M, Zhou L, Liu M, Huang Y, Sun X, Lu F. 2013. Construction of an engineering strain producing high yields of alpha-transglucosidase via Agrobacterium tumefaciens-mediated transformation of Asperillus niger. Biosci. Biotechnol. Biochem. 77: 1860-1866.
    Pubmed CrossRef
  26. Madhavan A, Pandey A, Sukumaran RK. 2017. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresour. Technol. 245:1334-1342.
    Pubmed CrossRef
  27. Canseco-Pérez MA, Castillo-Avila GM, Chi-Manzanero B, Islas-Flores I, Apolinar-Hernández MM, Rivera-Muñoz G, et al. 2018. Fungal screening on olive oil for extracellular triacylglycerol lipases: selection of a trichoderma harzianum strain and genome wide search for the genes. Genes 9(2): pii: E62.
    Pubmed CrossRef Pubmed Central
  28. Jo BS, Choi SS. 2015. Introns: the functional benefits of introns in genomes. Genomics Inform. 13: 112-118.
    Pubmed CrossRef Pubmed Central
  29. Kurachi S, Hitomi Y, Furukawa M, Kurachi K. 1995. Role of intron I in expression of the human factor IX gene. J. Biol. Chem. 270: 5276-5281.
    Pubmed CrossRef
  30. Gniadkowski M, Hemmings-Mieszczak M, Klahre U, Liu HX, Filipowicz W. 1996. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia. Nucleic Acids Res. 24: 619-627.
    Pubmed CrossRef Pubmed Central
  31. Jun X, Zhen GZ. 2003. Intron requirement for AFP gene expression in Trichoderma viride. Microbiology 149: 3093-3097.
    Pubmed CrossRef
  32. Gonzalez-Hilarion S, Paulet D, Lee KT, Hon CC, Lechat P, Mogensen E, et al. 2016. Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci. Rep. 6: 32252.
    Pubmed CrossRef Pubmed Central
  33. Kozak M. 2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361: 13-37.
    Pubmed CrossRef
  34. Du M, Ye L, Liu J, Liu J, Yang L. 2008. Enhancement of GFP expression by Kozak sequence +4G in HEK293 cells. Sheng Wu Gong Cheng Xue Bao 24: 491-494.
  35. Olafsdóttir G, Svansson V, Ingvarsson S, Marti E, Torsteinsdóttir S. 2008. In vitro analysis of expression vectors for DNA vaccination of horses: the effect of a Kozak sequence. Acta Vet. Scand. 50: 44.
    Pubmed CrossRef Pubmed Central
  36. Li J, Liang Q, Song WJ, Marchisio MA. 2017. Nucleotides upstream of the Kozak sequence strongly influence gene expression in the yeast S. cerevisiae. J. Biol. Eng. 11: 25.
    Pubmed CrossRef Pubmed Central
  37. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV. 2002. Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem. 38: 715-721.
    CrossRef
  38. Guang L. 2015. Purification and characterization of a lipase with high thermostability and polar organic solvent-tolerance from Aspergillus niger AN0512. Lipids 11: 1155-1163.
    Pubmed CrossRef
  39. dos Santos EAL, Lima ÁS, Soares CMF, Santana L. 2017. Lipase from Aspergillus niger obtained from mangaba residue fermentation: biochemical characterization of free and immobilized enzymes on a sol-gel matrix. Acta Sci.Technol. 39: 1-8.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd