Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-8: 1248~1254

AuthorMinju Jeong, Jae Hwan Kim, Hee Yang, Shin Dal Kang, Seongbong Song, Deukbuhm Lee, Ji Su Lee, Jung Han Yoon Park, Sanguine Byun, Ki Won Lee
Place of dutyDepartment of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
TitleHeat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects Via Activation of MAPK and STAT3 Pathways
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-8
AbstractIdentification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of TNF-α and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, NF-κB, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of TNF-α by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.
Full-Text
Key_wordLactobacillus plantarum, immunomodulatory effect, phagocytosis, macrophages
References
  1. Laskin DL. 2009. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem. Res. Toxicol. 22:1376-1385.
    Pubmed CrossRef Pubmed Central
  2. Gordon S. 2016. Phagocytosis: an immunobiologic process. Immunity 44: 463-475.
    Pubmed CrossRef
  3. Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445-455.
    Pubmed CrossRef Pubmed Central
  4. Aderem A, Underhill DM. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17: 593-623.
    Pubmed CrossRef
  5. Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. 2016. Mitogen-activated protein kinases and mitogen kinase phosphatase 1: a critical interplay in macrophage biology. Front Mol. Biosci. 3: 28.
    Pubmed CrossRef Pubmed Central
  6. Rao KM. 2001. MAP kinase activation in macrophages. J. Leukoc. Biol. 69: 3-10.
  7. Valledor AF, Sanchez-Tillo E, Arpa L, Park JM, Caelles C, Lloberas J, et al. 2 008. S elec tive r oles of MAPKs during the macrophage response to IFN-gamma. J. Immunol. 180: 4523-4529.
    Pubmed CrossRef
  8. Baeuerle PA, Henkel T. 1994. Function and activation of NFkappa B in the immune system. Annu. Rev. Immunol. 12:141-179.
    Pubmed CrossRef
  9. Grimm S, Baeuerle PA. 1993. The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem. J. 290 (Pt 2): 297-308.
    Pubmed CrossRef Pubmed Central
  10. Ghosh S, May MJ, Kopp EB. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225-260.
    Pubmed CrossRef
  11. Taverniti V, Guglielmetti S. 2011. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). Genes Nutr. 6: 261-274.
    Pubmed CrossRef Pubmed Central
  12. Yesilova Y, Calka O, Akdeniz N, Berktas M. 2012. Effect of probiotics on the treatment of children with atopic dermatitis. Ann. Dermatol. 24: 189-193.
    Pubmed CrossRef Pubmed Central
  13. Doege K, Grajecki D, Zyriax BC, Detinkina E, Zu Eulenburg C, Buhling KJ. 2012. Impact of maternal supplementation with probiotics during pregnancy on atopic eczema in childhood--a meta-analysis. Br. J. Nutr. 107: 1-6.
    Pubmed CrossRef
  14. Nation ML, Dunne EM, Joseph SJ, Mensah FK, Sung V, Satzke C, et al. 2017. Impact of Lactobacillus reuteri colonization on gut microbiota, inflammation, and crying time in infant colic. Sci. Rep. 7: 15047.
    Pubmed CrossRef Pubmed Central
  15. Chau K, Lau E, Greenberg S, Jacobson S, Yazdani-Brojeni P, Verma N, et al. 2015. Probiotics for infantile colic: a randomized, double-blind, placebo-controlled trial investigating Lactobacillus reuteri DSM 17938. J. Pediatr. 166: 74-78.
    Pubmed CrossRef
  16. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. 2010. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64: 636-643.
    Pubmed CrossRef
  17. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Moller K, Svendsen KD, et al. 2010. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br. J. Nutr. 104:1831-1838.
    Pubmed CrossRef
  18. Ahmad K, Fatemeh F, Mehri N, Maryam S. 2013. Probiotics for the treatment of pediatric helicobacter pylori infection: a randomized double blind clinical trial. Iran J. Pediatr. 23: 79-84.
  19. Hsieh PS, Tsai YC, Chen YC, Teh SF, Ou CM, King VA. 2012. Eradication of Helicobacter pylori infection by the probiotic strains Lactobacillus johnsonii MH-68 and L. salivarius ssp. salicinius AP-32. Helicobacter 17: 466-477.
    Pubmed CrossRef
  20. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. 2017. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 9: 111-122.
    Pubmed CrossRef
  21. Capozzi V, Russo P, Ladero V, Fernandez M, Fiocco D, Alvarez MA, et al. 2012. Biogenic amines degradation b lactobacillus plantarum: toward a potential application in wine. Front Microbiol. 3: 122.
    CrossRef
  22. Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, et al. 2010. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment. Genet Mol. Res. 9: 2191-2198.
    Pubmed CrossRef
  23. Kawashima T, Hayashi K, Kosaka A, Kawashima M, Igarashi T, Tsutsui H, et al. 2011. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int. Immunopharmacol. 11: 2017-2024.
    Pubmed CrossRef
  24. Kikuchi Y, Kunitoh-Asari A, Hayakawa K, Imai S, Kasuya K, Abe K, et al. 2014. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS One 9: e86416.
    Pubmed CrossRef Pubmed Central
  25. Rigaux P, Daniel C, Hisbergues M, Muraille E, Hols P, Pot B, et al. 2009. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 64: 406-414.
    Pubmed CrossRef
  26. Rizzo A, Losacco A, Carratelli CR, Domenico MD, Bevilacqua N. 2013. Lactobacillus plantarum reduces Streptococcus pyogenes virulence by modulating the IL-17, IL-23 and Tolllike receptor 2/4 expressions in human epithelial cells. Int. Immunopharmacol. 17: 453-461.
    Pubmed CrossRef
  27. Segers ME, Lebeer S. 2014. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb. Cell Fact. 13 Suppl 1: S7.
    Pubmed CrossRef Pubmed Central
  28. Billack B. 2006. Macrophage activation: role of toll-like rec eptors, n itric oxide, and nuc lear f ac tor k appa B . Am. J. Pharm. Educ. 70: 102.
    Pubmed CrossRef Pubmed Central
  29. Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958-969.
    Pubmed CrossRef Pubmed Central
  30. Fong FL, Kirjavainen PV, El-Nezami H. 2016. Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. Sci. Rep. 6: 22845.
    Pubmed CrossRef Pubmed Central
  31. Fong FLY, Kirjavainen P, Wong VHY, El-Nezami H. 2015. Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J. Functional Foods 13: 71-79.
    CrossRef
  32. Parameswaran N, Patial S. 2010. Tumor necrosis factoralpha signaling in macrophages. Crit. Rev. Eukaryot Gene Expr. 20: 87-103.
    Pubmed CrossRef Pubmed Central
  33. Lee JH, Ahn DU, Paik HD. 2018. In vitro immuneenhancing activity of ovotransferrin from egg white via mapk s ignaling p athways in RAW 2 64.7 mac rophages. Korean J. Food Sci. Anim. Resour. 38: 1226-1236.
    Pubmed CrossRef Pubmed Central
  34. Rosales C, Uribe-Querol E. 2017. Phagocytosis: a fundamental process in immunity. Biomed. Res. Int. 2017: 9042851.
    Pubmed CrossRef Pubmed Central
  35. Butprom S, Phumkhachorn P, Rattanachaikunsopon P. 2013. Effect of Lactobacillus plantarum C014 on innate immune response and disease resistance against Aeromonas hydrophila in hybrid catfish. ScientificWorldJournal. 2013: 392523.
    Pubmed CrossRef Pubmed Central
  36. Jang SE, Joh EH, Lee HY, Ahn YT, Lee JH, Huh CS, et al. 2013. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice. J. Microbiol. Biotechnol. 23: 414-421.
    Pubmed CrossRef
  37. Ren D, Li C, Qin Y, Yin R, Du S, Liu H, et al. 2015. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe 35:22-27.
    Pubmed CrossRef
  38. Meng Y, Li B, Jin D, Zhan M, Lu J, Huo G. 2018. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr. Res. 62: doi: 10.29219.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd