Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-8: 1310~1315

AuthorChaeri Park, Yun-Kyoung Song, Young Hyun Kim, Yena Jung, Young-Ho Park, Bong-Seok Song, Taekil Eom, Ju-Sung Kim, Sang-Hyun Kim, Ji-Su Kim, Sun-Uk Kim, Sang-Rae Lee, Ekyune Kim
Place of dutyCollege of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Gyeongbuk, 38430, Republic of Korea
TitleDevelopment of a New Type of Recombinant Hyaluronidase Using a Hexahistidine; Possibilities and Challenges in Commercialization
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-8
AbstractHyaluronidases enhance therapeutic drug transport by breaking down the hyaluronan barrier to lymphatic and capillary vessels, facilitating their tissue absorption. Commercially available hyaluronidases are bovine in origin; however, they pose risks such as bovine spongiform encephalopathy. The present study aimed to develop a novel, highly active hyaluronidase and assess its function. Therefore, in order to find the most efficient active hyaluronidase, we produced several shortened hyaluronidases with partial removal of the N- or C-terminal regions. Moreover, we created an enzyme that connected six histidines onto the end of the hyaluronidase C-terminus. This simplified subsequent purification using Ni2+ affinity chromatography, making it feasible to industrialize this highly active recombinant hyaluronidase which exhibited catalytic activity equal to that of the commercial enzyme. Therefore, this simple and effective isolation method could increase the availability of recombinant hyaluronidase for research and clinical purposes.
Full-Text
Key_wordRecombinant, hyaluronidase, affinity chromatography, enzyme, hyaluronic acid
References
  1. Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. 2019. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 78-79: 284-291.
    Pubmed CrossRef Pubmed Central
  2. Camaioni A, Salustri A, Yanagishita M, Hascall VC. 1996. Proteoglycans and proteins in the extracellular matrix of mouse cumulus cell-oocyte complexes. Arch. Biochem. Biophys. 325: 190-198.
    Pubmed CrossRef
  3. Viola M, Karousou E, D'Angelo ML, Caon I, De Luca G, Passi A, et al. 2015. Regulated Hyaluronan Synthesis by Vascular Cells. Int. J. Cell Biol. 2015: 208303.
    Pubmed CrossRef Pubmed Central
  4. Aya KL, Stern R. 2014. Hyaluronan in wound healing:rediscovering a major player. Wound Repair Regen. 22: 579-593.
    Pubmed CrossRef
  5. Nguyen N, Kumar A, Chacko S, Ouellette RJ, Ghosh A. 2017. Human hyaluronic acid synthase-1 promotes malignant transformation via epithelial-to-mesenchymal transition, micronucleation and centrosome abnormalities. Cell Commun. Signal. 15(1): 48.
    Pubmed CrossRef Pubmed Central
  6. Stern R, K ogan G , Jedrzejas M J, S oltes L. 2 007. T he m any ways to cleave hyaluronan. Biotechnol. Adv. 25: 537-557.
    Pubmed CrossRef
  7. Nishihara T, Morimoto Y. 2017. Evaluation of transfer media containing different concentrations of hyaluronan for human in vitro fertilization. Reprod. Med. Biol. 16: 349-353.
    Pubmed CrossRef Pubmed Central
  8. Marei WF, Ghafari F, Fouladi-Nashta AA. 2012. Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes. Theriogenology 78: 670-677.
    Pubmed CrossRef
  9. Stern R, Jedrzejas MJ. 2006. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem. Rev. 106: 818-839.
    Pubmed CrossRef Pubmed Central
  10. Kim E, Baba D, Kimura M, Yamashita M, Kashiwabara S, Baba T. 2005. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc. Natl. Acad. Sci. U S A 102: 18028-18033.
    Pubmed CrossRef Pubmed Central
  11. Kimura M, Ishida K, Kashiwabara S, Baba T. 2009. Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol. Reprod. 80: 545-554.
    Pubmed CrossRef
  12. Yoon S, Chang KT, Cho H, Moon J, Kim JS, Min SH, et al. 2014. Characterization of pig sperm hyaluronidase and improvement of the digestibility of cumulus cell mass by recombinant pSPAM1 hyaluronidase in an in vitro fertilization assay. Anim. Reprod. Sci. 150: 107-114.
    Pubmed CrossRef
  13. Myles DG, Primakoff P. 1984. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J. Cell Biol. 99: 1634-1641.
    Pubmed CrossRef
  14. Gmachl M, Kreil G. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. U S A 90: 3569-3573.
    Pubmed CrossRef Pubmed Central
  15. Park C, Kim YH, Lee SR, Park S, Jung Y, Lee Y, et al. 2018. Characterization of Recombinant Bovine Sperm Hyaluronidase and Identification of an Important Asn-XSer/Thr Motif for Its Activity. J. Microbiol. Biotechnol. 28: 1547-1553.
  16. Geetha-Habib M, Park HR, Lennarz WJ. 1990. In vivo Nglycosylation and fate of Asn-X-Ser/Thr tripeptides. J. Biol. Chem. 265: 13655-13660.
  17. Gabius HJ. 2018. T he s ugar c ode: W hy g lycans a re s o important. Biosystems 164: 102-111.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd