Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-7: 1104~1116

AuthorHai The Pham, Hien Thi Tran, Linh Thuy Vu, Hien The Dang, Thuy Thu Thi Nguyen, Thu Ha Thi Dang, Mai Thanh Thi Nguyen, Huy Quang Nguyen, Hong Byung Kim
Place of dutyResearch group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE) and Department of Microbiology - Faculty of Biology, Vietnam National University – University of Science, Hanoi 144, Vietnam
TitleA Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Establishment, Bacterial Community and Performance Evaluation
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-7
AbstractIn this study, we investigated the potential of using sediment bioelectrochemical systems (SBESs) for in situ treatment of the water and sediment in brackish aquaculture ponds polluted with uneaten feed. An SBES integrated into a laboratory-scale tank simulating a brackish aquaculture pond was established. This test tank and the control (not containing the SBES) were fed with shrimp feed in a scheme that mimics a situation where 50% of feed is uneaten. After the SBES was inoculated with microbial sources from actual shrimp pond sediments, electricity generation was well observed from the first experimental week, indicating successful enrichment of electrochemically active bacteria in the test tank sediment. The electricity generation became steady after 3 weeks of operation, with an average current density of 2.3 mA/m2 anode surface and an average power density of 0.05 mW/m2 anode surface. The SBES removed 20-30% more COD of the tank water, compared to the control. After 1 year, the SBES also reduced the amount of sediment in the tank by 40% and thus could remove approximately 40% more COD and approximately 52% more nitrogen from the sediment, compared to the control. Insignificant amounts of nitrite and nitrate were detected, suggesting complete removal of nitrogen by the system. PCR-DGGE-based analyses revealed the dominant presence of Methylophilus rhizosphaerae, Desulfatitalea tepidiphila and Thiothrix eikelboomii, which have not been found in bioelectrochemical systems before, in the bacterial community in the sediment of the SBES-containing tank. The results of this research demonstrate the potential application of SBESs in helping to reduce water pollution threats, fish and shrimp disease risks, and thus farmers’ losses.
Full-Text
Supplemental Data
Key_wordMicrobial fuel cell, sediment bioelectrochemical systems, brackish aquaculture, in situ bioremediation
References
  1. Sajana TK, Ghangrekar MM, Mitra A. 2013. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquac. Eng. 57: 101-107.
    CrossRef
  2. Off icial website of the Directorate of Fisheries - Vietnam Ministry of Agriculture and Rural Development: https://tongcucthuysan.gov.vn.
  3. Boyd CE. 1998. Pond water aeration systems. Aquac. Eng. 18: 9-40.
    CrossRef
  4. van Rijn J. 1996. The potential for integrated biological treatment systems in recirculating fish culture—a review. Aquac. 139: 181-201.
    CrossRef
  5. Lin Y-F, Jing S-R, Lee D-Y, Wang T-W. 2002. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquac. 209: 169-184.
    CrossRef
  6. Z ou S, Guan L, Taylor DP, Kuhn D, He Z. 2018. Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquac. 497: 74-81.
    CrossRef
  7. Marx Sander E, Virdis B, Freguia S. 2018. Bioelectrochemical denitrification for the treatment of saltwater recirculating aquaculture streams. ACS Omega 3: 4252-4261.
    Pubmed CrossRef Pubmed Central
  8. Re imers CE, Tender LM, Fertig S, Wang W. 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35: 192-195.
    Pubmed CrossRef
  9. Ja ng JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, et al. 2004. Construction and operation of a novel mediatorand membrane-less microbial fuel cell. Process Biochem. 39:1007-1012.
    CrossRef
  10. B ond DR, Holmes DE, Tender LM, Lovley DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485.
    Pubmed CrossRef
  11. Hong S, Choi Y, Chung T, Song J, Kim H. 2009. Assessment of sediment remediation potential using microbial fuel cell technology. World Acad. Sci. Eng. Technol. 54: 683-689.
  12. Morris J M, J in S . 2012. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J. Hazard. Mater. 213: 474-477.
    Pubmed CrossRef
  13. Sherafatmand M , Ng H Y. 2015. Using s ediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresour. Technol. 195: 122-130.
    Pubmed CrossRef
  14. An J, Kim B, Nam J, Ng HY, Chang IS. 2013. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. Bioresour. Technol. 127: 138-142.
    Pubmed CrossRef
  15. E wing T, Ha PT, Babauta JT, Tang NT, Heo D, Beyenal H. 2014. Scale-up of sediment microbial fuel cells. J. Power Sources 272: 311-319.
    CrossRef
  16. De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W. 2008. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microbial Biotechnol. 1:446-462.
    Pubmed CrossRef Pubmed Central
  17. Donovan C, Dewan A, Heo D, Beyenal H. 2008. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol. 42: 8591-8596.
    Pubmed CrossRef
  18. Scott K, Cotlarciuc I, Head I, Katuri KP, Hall D, Lakeman JB, et al. 2008. Fuel cell power generation from marine sediments: Investigation of cathode materials. J. Chem. Technol. Biotechnol. 83: 1244-1254.
    CrossRef
  19. Ten der LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, et al. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825.
    Pubmed CrossRef
  20. Bui TQ. 2010. Standard protocols of rearing shrimps following good aquaculture practice (GAP) (in Vietnamese), pp. 1-17. Ed. Research Institute of Aquaculture No. 1, Bac Ninh, Vietnam.
  21. Tacon AGJ, Phillips MJ, Barg UC. 1995. Aquaculture feeds and the environment: The asian experience. Water Sci. Technol. 31: 41-59.
    CrossRef
  22. Hasan M. 2000. Presented at the Aquaculture in the third millennium. Technical proceedings of the conference on aquaculture in the third millennium, Bangkok, Thailand.
  23. Ael terman P, Rabaey K, Pham HT, Boon N, Verstraete W. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394.
    Pubmed CrossRef
  24. L ogan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, et al. 2006. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181-5192.
    Pubmed CrossRef
  25. Srinivasan V, Weinrich J, Butler C. 2016. Nitrite accumulation in a denitrifying biocathode microbial fuel cell. Environ. Sci:Water Res. Technol. 2: 344-352.
    CrossRef
  26. N guyen TT, Luong TTT, Tran PHN, Bui HTV, Nguyen HQ, Dinh HT, et al. 2015. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode. Microbial Biotechnol. 8: 579-589.
    Pubmed CrossRef Pubmed Central
  27. B oon N, Goris J, De Vos P, Verstraete W, Top EM. 2000. Bioaugmentation of activated sludge by an indigenous 3chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl. Environ. Microbiol. 66: 2906-2913.
    Pubmed CrossRef Pubmed Central
  28. Muyzer G, de Waal EC, Uitterlinden A. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  29. M uyzer G, Teske A, Wirsen CO, Jannasch HW. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172.
    Pubmed CrossRef
  30. Al tschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
    CrossRef
  31. Greenberg A, Clesceri LS, Eaton AD. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edn, pp. 5-16 – 5-19. Ed. American Public Health Association, Washington DC
  32. Vyrides I, Stuckey D. 2009. A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresour. Technol. 100: 979-982.
    Pubmed CrossRef
  33. Sh antaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z. 2005. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol. 39: 5037-5042.
    Pubmed CrossRef
  34. Zhang Y, Angelidaki I. 2012. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes. Water Res. 46: 6445-6453.
    Pubmed CrossRef
  35. Wa ng A, Cheng H, Ren N, Cui D, Lin N, Wu W. 2012. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Front. Environ. Sci. Eng. 6: 569-574.
    CrossRef
  36. C ruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli S, Zanaroli G, et al. 2015. The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front. Microbiol. 6: 881.
    Pubmed CrossRef Pubmed Central
  37. Lovley DR. 2006. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4: 497-508.
    Pubmed CrossRef
  38. Hien TT, Linh VT, Hai PT. 2016. Bacteria isolated from the sediment of a bioelectrochemical system installed in a simulated aquaculture pond operated with brackish water. VNU J. Nat. Sci. Technol. 32: 233-241.
  39. Ma dhaiyan M, Poonguzhali S, Kwon S-W, Sa T-M. 2009. Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 59: 2904-2908.
    Pubmed CrossRef
  40. How arth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, et al. 1999. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix s pp. and E ikelboom type 021N bacteria) isolated from wastewatertreatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov. , Thiothrix fructosivorans sp. nov. and Thiothrix defluvii s p. nov. Int. J. Syst. Evol. Microbiol. 49:1817-1827.
    Pubmed CrossRef
  41. Hi gashioka Y, Kojima H, Watanabe M, Fukui M. 2013. Desulfatitalea tepidiphila gen. nov., sp. nov., a sulfate reducing bacterium isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 63: 761-765.
    Pubmed CrossRef
  42. Wi ddel F, Bak F. 1992. Gram-Negative Mesophilic SulfateReducing Bacteria, pp. 3352-3378. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds.), The Prokaryotes:A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Ed. Springer New York, New York, NY
    CrossRef
  43. Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, et al. 2007. Microbial resource management:the road to go for environmental biotechnology. Eng. Life Sci. 7: 117-126.
    CrossRef
  44. Ryan MP, Pembroke JT. 2018. Brevundimonas spp: emerging global opportunistic pathogens. Virulence 9: 480-493.
    Pubmed CrossRef Pubmed Central
  45. P ham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, et al. 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 6: 285-292.
    CrossRef
  46. P uig S, Serra M, Coma M, Balaguer M, Colprim J. 2011. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci. Technol. 64: 904-909
    CrossRef
  47. Yos hie S, Makino H, Hirosawa H, Shirotani K, Tsuneda S, Hirata A. 2006. Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater. Appl. Environ. Microbiol. 72: 182-189.
    Pubmed CrossRef
  48. Y oshie S, Noda N, Tsuneda S, Hirata A, Inamori Y. 2004. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems. Appl. Environ. Microbiol. 70: 3152-3157.
    Pubmed CrossRef Pubmed Central
  49. Ki ts KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, et al. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549: 269-272.
    Pubmed CrossRef Pubmed Central
  50. Koch H , van Kessel M A, L ücker S . 2019. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Environ. Microbiol. 103: 177-189.
    Pubmed CrossRef Pubmed Central
  51. Gajaraj S, Hu Z. 2014. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere 117: 151-157.
    Pubmed CrossRef
  52. Xi ao B, Luo M, Wang X, Li Z, hen H, Liu J, et al. 2017. Electricity production and sludge reduction by integrating microbial fuel cells in anoxic-oxic process. Waste Manag. 69:346-352.
    Pubmed CrossRef
  53. B orea L, Puig S, Monclús H, Naddeo V, Colprim J, Belgiorno V. 2017. Microbial fuel cell technology as a downstream process of a membrane bioreactor for sludge reduction. Chem. Eng. J. 326: 222-230.
    CrossRef
  54. Boyd C E, S chmittou H R. 1999. Achievement o f sustainable aquaculture through environmental management. Aquac. Economics Manag. 3: 59-69.
    CrossRef
  55. Camargo JA, Alonso Á. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:a global assessment. Environ. Int. 32: 831-849.
    Pubmed CrossRef
  56. We i J, Liang P, Huang X. 2011. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102: 9335-9344.
    Pubmed CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd