Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-9: 1412~1423

AuthorLilia Lopez de leon, Isaura Caceres, Julie Bornot, Elodie Choque, Jose Raynal, Patricia Taillandier, Florence Mathieu
TitleInfluence of the culture conditions on the production of NGPs by Aspergillus tubingensis
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-9
AbstractThe filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, Naphtho-Gamma-Pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that these secondary metabolites production is linked with the fungal sporulation. The aim of this research was to apply environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth): osmotic and oxidative stresses. In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity (aw) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGPs’s production, which may support the development of current industrial processes.
Full-Text
Key_wordAspergillus tubingensis, Naphtho-Gamma-Pyrones (NGPs), osmotic stress, oxidative stress
References
  1. Bibhu PP, Mohd A, Saleem J. 2007. Fermentation Process Optimization. J. Microbiol. 2: 201-208.
    CrossRef
  2. Madigan MT, Martinko, Parker. 2008. Brock. Biología de los microorganismos, pp.142-144. 8th Ed. Prentice hall, Barcelona Espana.
  3. Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC. 2009. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. J. Anal. Bioanal. Chem. 395: 1225-1242.
    Pubmed CrossRef
  4. Berka RM, Barnett CC. 1989. The development of gene expression systems for filamentous fungi. J. Biotechnol. Adv : 127-154.
    CrossRef
  5. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, et al. 2011. Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6: e23496.
    Pubmed CrossRef Pubmed Central
  6. Abarca ML, Bragulat MR, Castella G, Cabane FJ. 1994 Ochratoxin A Production by Strains of Aspergillus niger var.niger. Appl. Environ. Microbiol. 60: 2650-2652.
  7. Dijksterhuis J, Samson RA. 2007. Food Mycology: A Multifaceted Approach to Fungi and Food. PP. 10-17. 1st Ed. CRC Press, Broken Sound Pkwy NW.
    CrossRef Pubmed Central
  8. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. 2007. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomoorph Neosartorya. Stud. Mycol. 59: 147-207.
    Pubmed CrossRef Pubmed Central
  9. Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC. 2004. New ochratoxin or sclerotium producing species in Aspergillus section Nigri. J. Stud. Mycol. 50: 45-61.
  10. Bouras N, Mathieu F, Coppel Y, Strelkov SE, Lebrihi A. 2007. Occurrence of naphtho-gamma-pyrones- and ochratoxin A-producing fungi in French grapes and characterization of new naphtho-gamma-pyrone polyketide (aurasperone G) isolated from Aspergillus niger C-433. J. Agric. Food Chem. 55: 8920-8937.
    Pubmed CrossRef
  11. Bouras N, Mathieu F, Coppel Y, Lebrihi A. 2005. Aurasperone F–a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, Aspergillus niger C-433. Nat. Prod. Res. 19: 653-659.
    Pubmed CrossRef
  12. Choque E, Kloopp C, Valiere S, El Rayess Y, Raynal J, Mathieu F. 2018. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential. BMC Genomics 19: 200.
    Pubmed CrossRef Pubmed Central
  13. Choque E, El Rayess Y, Raynal J, Mathieu F. 2015. Fungal naphtho-alpha-pyrones secondary metabolites of industry interest. Appl. Microbiol. Biotechnol. 99: 1081-1096.
    Pubmed CrossRef
  14. Mosseray R. 1934. Les aspergilluss de la section niger Thom et church. J. La Cellule 43: 245-247.
  15. Samson RA, Varga J. 2009. What is species in asperguillius?. Med. Mycol. 47: Supple 1: 13-S20.
    Pubmed CrossRef
  16. Hang YD, Woodams EE. 1985. Grape pomace: a novel substrate for microbial production of citric acid. Biotechnol. Lett. 7: 253-254.
    CrossRef
  17. Hang YD, Luh BS, Woodams EE. 1987. Microbial production of citric acid by solid state fermentation of kiwifruit peel. Food Sci. 52: 226-227.
    CrossRef
  18. Ernst-Russell MA, Chai CL, Wardlaw JH, Elix JA. 2000. Euplectin and Coneuplectin, New Naphthopyrones from the Lichen Flavoparmelia euplecta. J. Nat. Prod. 63: 129-131.
    Pubmed CrossRef
  19. Li XC, Dunbar D C, E lSohly H N, J acob M R, Nimrod AC, Walker LA, et al. 2001. A new naphthopyrone derivative from Cassia quinquangulata and structural revision of quinquangulin and its glycosides. J. Nat. Prod. 64: 1153-1156.
    Pubmed CrossRef
  20. Graham JG, Zhang H, Pendland SL, Santarsiero BD, Mesecar AD, Cabieses F, et al. 2004. Antimycobacterial naphtha pyrones from Senna obliqua. J. Nat. Prod. 67: 225-227.
    Pubmed CrossRef
  21. Lee GY, Jang DS, Lee YM, Kim JM, Kim JS. 2006. Naphtho pyrone glucosides from the seeds of Cassia torawith inhibitory activity on advanced glycation end products (AGEs) formation. Arch. Pharm. Res. 29: 587-590.
    Pubmed CrossRef
  22. Bokesch HR, Cartner LK, Fuller RW, Wilson JA, Henrich CJ, Kelley JA, et al. 2010. Inhibition of ABCG2-mediated drug efflux by naphtha pyrones from marine cri-noids. Bioorg. Med. Chem. Lett. 20: 3848-3850.
    Pubmed CrossRef Pubmed Central
  23. Chovolou Y, Ebada SS, Wätjen W, Proksch P. 2011. Identification of angular naphtha pyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF-κB signaling pathway. Eur. J. Pharmacol. 657: 26-34.
    Pubmed CrossRef
  24. Akiyama K, Teraguchi S, Hamasaki Y, Mori M, Tatsumi K, Ohnishi K, et al. 2003. - New dimeric naphthopyrones from Aspergillus niger. J. Nat. Prod. 66: 136-139.
    Pubmed CrossRef
  25. Galmarini OL, Stodola FH. 1965. Fonsecin, a pigment from an Aspergillus fonsecaeus. J. Org. Chem. 30: 112-115.
    CrossRef
  26. Tanaka H, Wang PL, Yamada O, Tamura H. 1966. Yellow pigments of Aspergillus niger and A. awamori. I. Isolation of aurasperone A and related pigments. J. Agric. Biol. Chem. 30: 107-113.
    CrossRef
  27. Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, et al. 2002. TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J. Antibiot. 55: 685-692.
    Pubmed CrossRef
  28. Priestap HA. 1984. New naphthopyrones from Aspergillus fonsecaeus. J. Tetrahedron. 40: 3617-3624.
    CrossRef
  29. Singh SB, Zink DL, Bills GF, Teran A, Silverman KC, Lingham RB, et al. 2003. Four novel bis-(naphtho-gammapyrones) isolated from Fusarium species as inhibitors of HIV-1 integrase. J. Bioorg. Med. Chem. Lett. 13: 713-717.
    CrossRef
  30. Hatano T, Uebayashi H, Ito H, Shioto S, Tsuchia T, Yoshida, T. 1999. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. J. Chem. Pharm. Bull. 47: 1121-1127.
    Pubmed CrossRef
  31. Song YC, Li H, Ye YH, Shan CY, Yang YM., Tan RX. 2004. Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. J. FEMS Microbiol. 241: 67-72.
    Pubmed CrossRef
  32. Rabache M, Adrian, J. 1982. Physiological effects of the Aspergillus niger pigments, 2.Antioxygen property of the naphtho-gamma-pyronesestimated in the rat. J. Sci. Aliments 2: 505.
  33. Kitanaka S, Nakayama T, Shibano T, Ohkoshi E, Takido M. 1998. Antiallergic agent from natural sources. Structures and inhibitory effect of histamine release of naphtha pyrone glycosides from seeds of Cassia obtusefoliaL. J. Chem Pharm. Bull. 46: 1650-1652.
    Pubmed CrossRef
  34. Koyama K, Natori S, Iitaka, Y. 1987. Absolute configuration of chaetochromin A and related bis(naphto-γ-pyrone) mold metabolites. Chem. Pharm. Bull. 35: 4049-4055.
    CrossRef
  35. Coelho RG, Vilegas W, Devienne KF, Raddi M.S. 2000. A new cytotoxic naphthopyrone dimer from Paepalanthus bromelioides. J. Fitoterapia 71: 497-500.
    CrossRef
  36. Li X-B, Xie F, Liu S-S, Li Y, Zhou J-C, Liu Y-Q, et al. 2013. Naphtho-γ-pyrones from endophyte Aspergillus nigeroccurring in the liver wort Heteroscyphus tener (steph.) Schiffn. J. Chem. Biodivers. 10: 1193-1201.
    Pubmed CrossRef
  37. Xiao J, Zhang Q, Gao Y-Q, Shi X-W, Gao J-M. 2014. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. J. Nat. Prod. Res. 28: 1388-1392.
    Pubmed CrossRef
  38. Zhang Y, Li XM, Wang BG. 2007. Nigerasperones A~C, New Monomeric and Dimeric Naphtho-γ-pyrones from a Marine Alga-derived Endophytic Fungus Aspergillus niger EN-13. J. Antibiot. 60: 204-210.
    Pubmed CrossRef
  39. Frank HS. 1974. Structure of water and aqueous solutions. pp. 10-47. Ed. by WAP. Luck, Verlag Chemie, Berlin.
  40. Carboue Q, Claeys-Bruno M, Bombarda I, Sergent M, Jolain J, Roussos S. 2018 Experimental design and solid-state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom. Intell. Lab. Syst. 176: 101-107.
    CrossRef
  41. Fountain JC, Bajaj P, Pandey M, Nayak SN, Yang L, Kumar V, et al. 2016. Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Sci. Rep. 6: 38747.
    Pubmed CrossRef Pubmed Central
  42. Sloan AE, Labuza TP. 1976. Prediction of water activity lowering ability of food humectants at high Aw. J. Food Sci. 41: 532-535.
    CrossRef
  43. Geigenberger P. 2003. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 6: 247-256.
    CrossRef
  44. Veglio F, Beolchini F, Ubaldini S. 1998. Empirical models for oxygen mass transfer: a comparison between shake flask and lab-scale fermentor and application to manganiferous ore bioleaching. Process Biochem. 33: 367-376.
    CrossRef
  45. Carolyn WT Lee, Michael LS. 1991. Different shake flask closures alter gas phase composition and ajmalicine production in Catharanthus roseus cell suspensions. Biotechnol. Tech. 5: 173-178.
    CrossRef
  46. Gump BH, Zoecklein BW. Fugelsang, KC. 2001. Prediction of prefermentation nutritional status of grape juice. J. Food Microbiol. 14: 286-293.
  47. Miller G. 1959. Use of 3, 5-Dinitrosalicylic acid reagent for Determination of reducing sugar. J. Anal. Chem. 31: 426-428.
    CrossRef
  48. Clesceri LS, Eaton, AD, Greenberg A.E, Franson MAH. 1996. Standard methods for the examination of water and wastewater. 19th Ed. Washington, DC.
  49. Jenkins D, Medsken, L. 1964. A Brucine Method for the Determination of Nitrate in Ocean, Estuarine, and Fresh Waters. Anal. Chem. 36: 610-612.
    CrossRef
  50. Harms H, Schlosser D, Wick LY. 2011. Untapped potential:exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9: 177-192.
    Pubmed CrossRef
  51. Trinci AP. 1974. A study of the kinetics of hyphal extension and branch initiation of fungal mycelial. J. Gen. Microbiol. 81: 225-236.
    Pubmed CrossRef
  52. Olthof THA, Estey RH. 1966. Carbon- and Nitrogen-levels of a Medium in Relation to Growth and Nematophagous Activity of Arthrobotrys oligospora Fresenius. Nature 209: 1158.
    CrossRef
  53. Engelkes CA, Nuclo RL, Fravel DR. 1997. Effect of carbon, nitrogen,and carbon to nitrogen ratio on growth, sporulation and bio-control efficacy of Taloromyces flavus. J. Phytopathology 87: 500-505.
    Pubmed CrossRef
  54. Liu XZ, Chen SY. 2002. Nutritional Requirements of the Nematophagous Fungus Hirsutella rhossiliensis. Biocontrol. Sci. Technol. 12: 381-393.
    CrossRef
  55. Gao L, Liu XZ. . 2010. Nutritional requirements of mycelial growth and sporulation of several biocontrol fungi in submerged and on solid culture. J. Microbiol. 79: 622-639.
    CrossRef
  56. Jackson MA, Bothast RJ. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidiation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56: 3435-3438.
  57. Jackson MA, Schisler DA. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl. Environ. Microbiol. 58: 2260-2265.
  58. Jackson MA, Slininger PJ. 1993. Submerged culture conidial germination and conidiation of the bioherbicide Colletotrichum truncatum are influenced by the amino acid composition of the medium. J. Ind. Microbiol. Biot. 12: 417-422.
    CrossRef
  59. Schisler DA, Jackson MA, Bothast RJ. 1991. Influence of nutrition during conidiation of Colletotrichum truncatum on conidial germination and efficacy in inciting disease in Sesbania exaltata. J. Phytopathology 81: 587-590.
    CrossRef
  60. Elson MK, Schisler DA, Jackson MA. 1998. Carbon-tonitrogen ratio, carbon concentration, and amino acid composition of growth media influence conidiation of Helminthosporium solani. J. Mycologia 98: 406-413.
    CrossRef
  61. Gao L, Sun MH, Liu XZ, Che YS. 2006. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. J. Mycol Res. 3: 87-92.
    Pubmed CrossRef
  62. Child JJ, Knapp C, Eveleigh DE. 1973. Improved pH control of fungal culture media. Mycologia 65: 1078-1086.
    Pubmed CrossRef
  63. Wheeler KA, Hurdman BF, Pitt JI. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int. J. Food Microbiol. 12: 141-149.
    CrossRef
  64. Papagianni M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. J. Biotechnol Adv. 22: 189-259.
    Pubmed CrossRef
  65. Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Rodríguez Porcel EM, Chisti Y. 2005. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol. 116: 61-77.
    Pubmed CrossRef
  66. Bilder TB, Fonteno WC. 1987. Effects of container geometry and media physical properties on air and water volumes in containers. J. Environ. Hortic. 5: 180-182.
  67. Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, et al. 2000. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. J. Mol. Biol. Cell 11: 2335-2347.
    Pubmed CrossRef Pubmed Central
  68. Hagiwara D, Mizuno T, Abe K. 2009. Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. J. Biosci. Biotechnol. Biochem. 73: 1566-1571.
    Pubmed CrossRef
  69. Xue, T, Nguyen CK, Romans A, May GS. 2 004. A mitogenactivated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. J. Eukaryotic Cell 3: 557-560.
    Pubmed CrossRef Pubmed Central
  70. Han KH, Seo JA, Yu JH. 2003. A putative G protein-coupled receptor controls growth, Germination and coordinated development in Aspergillus nidulans. J. Mol. Microbiol 51: 1333-1345.
    Pubmed CrossRef
  71. Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. 2007. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. J. Biochem. Biophys. Res. Commun. 363: 639-644.
    Pubmed CrossRef
  72. Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, et al. 2001. RcoA has pleiotropic effects on Aspergillus nidulans cellular development. J. Mol. Microbiol. 39: 1482-1493.
    Pubmed CrossRef
  73. Davis ND, Diener UL. 1968. Growth and aflatoxin production by Aspergillus parasiticus from various carbon sources. App. Microbiol. 16: 158-159.
  74. Chipley JR, Uraih, N. 1980. Inhibition of Aspergillus growth and aflatoxin release by derivatives of benzoic acid. Appl. Environ. Microbiol. 40: 352-357.
  75. Fountain JC, Scully BT, Chen ZY, Gold SE, Glenn AE, Abbas HK, et al. 2015. Effects of hydrogen peroxide on different toxigenic and atoxigenic isolates of Aspergillus flavus. Toxins(basel) 7: 2985-2999.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd