Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-10: 1624~1628

AuthorLin Fu, Yannan Ou, Zongzhuan Shen, Beibei Wang, Rong Li, Qirong Shen
Place of dutyInstitute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, P.R.China,Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, P.R.China
TitleStable Microbial Community and Specific Beneficial Taxa Associated
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-10
AbstractBanana planting altered microbial communities and induced the enrichment of Fusarium oxysporum in rhizosphere compared with that of forest soil. Diseased plant rhizosphere soil (WR) harbored increased pathogen abundance and showed distinct microbial structures from healthy plant rhizosphere soil (HR). The enriched taxon of Bordetella and key taxon of Chaetomium together with some other taxa showed negative associations with pathogen in HR, indicating their importance in pathogen inhibition. Furthermore, a more stable microbiota was observed in HR than in WR. Taken together, the lower pathogen abundance, specific beneficial microbial taxa and stable microbiota contributed to disease suppression.
Full-Text
Supplemental Data
Key_wordFusarium wilt, rhizosphere microbiota, stability, co-occurrence
References
  1. Butler D. 2013. Fungus threatens top banana. Nature 54: 195-196. https://doi.org/10.1038/504195aPMid:24336262
  2. Ploetz RC. 2015. Fusarium wilt of banana. Phytopathology 105: 1512-1521. https://doi.org/10.1094/PHYTO-04-15-0101-RVWPMid:26057187
  3. Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R, et al. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 104: 39-48. https://doi.org/10.1016/j.soilbio.2016.10.008
  4. Raaijmakers JM, Mazzola M. 2016. Soil immune responses. Science 352: 1392-1393. https://doi.org/10.1126/science.aaf3252PMid:27313024
  5. Fu L, Ruan Y, Tao C, Li R, Shen Q. 2016. Continuous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Sci. Rep. 6: 27731. https://doi.org/10.1038/srep27731PMid:27306096 PMCid:PMC4910074
  6. Fierer N, Jackson JA, Vilgalys R, Jackson RB. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71: 4117-4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005PMid:16000830 PMCid:PMC1169028
  7. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108: 4516-4522. https://doi.org/10.1073/pnas.1000080107PMid:20534432 PMCid:PMC3063599
  8. McGuire KL, Payne SG, Palmer MI, Gillikin CM, Keefe D, Kim SJ, et al. 2013. Digging the New York city skyline: soil fungal communities in green roofs and city parks. PLoS One 8: e58020. https://doi.org/10.1371/journal.pone.0058020PMid:23469260 PMCid:PMC3585938
  9. Shen Z, Penton CR, Lv N, Xue C, Yuan X, Ruan Y, et al. 2018. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microb. Ecol. 75: 739-750. https://doi.org/10.1007/s00248-017-1052-5PMid:28791467
  10. van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Krištůfek V, Salles JF. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109: 1159-1164. https://doi.org/10.1073/pnas.1109326109PMid:22232669 PMCid:PMC3268289
  11. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, et al. 2008. Relative impacts of landuse, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol. Biochem. 40: 2843-2853. https://doi.org/10.1016/j.soilbio.2008.07.030
  12. Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, Dhingra A, et al. 2013. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of w heat ( Triticum aestivum L.). Appl. Environ. Microbiol. 79: 7428-7438. https://doi.org/10.1128/AEM.01610-13PMid:24056471 PMCid:PMC3837727
  13. Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou J, Wang N. 2012. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 6: 363-383. https://doi.org/10.1038/ismej.2011.100PMid:21796220 PMCid:PMC3260493
  14. Köberl M, Dita M, Martinuz A, Staver C, Berg G. 2017. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci. Rep. 7: 45318. https://doi.org/10.1038/srep45318PMid:28345666 PMCid:PMC5366900
  15. Pimm SL. 1984. The complexity and stability of ecosystems. Nature 307: 321-326. https://doi.org/10.1038/307321a0
  16. McCann KS. 2000. The diversity-stability debate. Nature 405:228-233. https://doi.org/10.1038/35012234PMid:10821283
  17. Leary DJ, Rip JMK, Petchey OL. 2012. The impact of environmental variability and species composition on the stability of experimental microbial populations and communities. Oikos 121: 327-336. https://doi.org/10.1111/j.1600-0706.2011.19523.x
  18. Dunstan PK, Johnson CR. 2006. Linking richness, community variability, and invasion resistance with patch size. Ecology 87: 2842-2850. https://doi.org/10.1890/0012-9658(2006)87[2842:LRCVAI]2.0.CO;2
  19. Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6: 8413. https://doi.org/10.1038/ncomms9413PMid:26400552 PMCid:PMC4598729
  20. Manikandan R, Karthikeyan G, Raguchander T. 2017. Soil proteomics for exploitation of microbial diversity in Fusarium wilt infected and healthy rhizosphere soils of tomato. Physiol. Mol. Plant Pathol. 100: 185-193. https://doi.org/10.1016/j.pmpp.2017.10.001
  21. Wang B, Li R, Ruan Y, Ou Y, Zhan Y, Shen Q. 2015. Pineapple-banana rotation reduced the amount of Fusarium oxysporum more than maize-banana rotation mainly through modulating fungal communities. Soil Biol. Biochem. 86: 77-86. https://doi.org/10.1016/j.soilbio.2015.02.021
  22. Olesen J, Bascompte J, Dupont Y, Jordano P. 2007. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104: 19891-19896. https://doi.org/10.1073/pnas.0706375104PMid:18056808 PMCid:PMC2148393
  23. Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR. 2013. Siderophore producing PGPR for crop nutrition and phytopathogen suppression, pp. 454. In Maheshwari DK (ed.), Bacteria in Agrobiology: Disease Management, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_17
  24. Imran H, Darine TH, Mohamed G. 2012. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi. Afr. J. Biotechnol. 11: 14660-14670.
  25. Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M. 2001. Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control: A review article. Fungal Divers. 7: 1-15.
  26. Alabouvette C. 1999. Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas. Plant Pathol. 28: 57-64. https://doi.org/10.1071/AP99008



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd