Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-9: 1401~1411

AuthorChaebok Lee, Bindu Subhadra, Hei-Gwon Choi, Hyun-Woo Suh, Han S. Uhm, Hwa-Jung Kim
Place of dutyDepartment of Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
TitleInactivation of Mycobacteria by Radicals from Non-Thermal Plasma Jet
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-9
AbstractMycobacterial cell walls comprise thick and diverse lipids and glycolipids that act as a permeability barrier to antibiotics or other chemical agents. The use of OH radicals from a non-thermal plasma jet (NTPJ) for the inactivation of mycobacteria in aqueous solution was adopted as a novel approach. Addition of water vapor in a nitrogen plasma jet generated OH radicals, which converted to hydrogen peroxide (H2O2) that inactivated non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis H37Rv. A stable plasma plume was obtained from a nitrogen plasma jet with 1.91 W of power, killing Escherichia coli and mycobacteria effectively, whereas addition of catalase decreased the effects of the former. Mycobacteria were more resistant than E. coli to NTPJ treatment. Plasma treatment enhanced intracellular ROS production and upregulation of genes related to ROS stress responses (thiolrelated oxidoreductases, such as SseA and DoxX, and ferric uptake regulator furA). Morphological changes of M. smegmatis and M. tuberculosis H37Rv were observed after 5 min treatment with N2+H2O plasma, but not of pre-incubated sample with catalase. This finding indicates that the bactericidal efficacy of NTPJ is related to the toxicity of OH and H2O2 radicals in cells. Therefore, our study suggests that NTPJ treatment may effectively control pulmonary infections caused by M. tuberculosis and nontuberculous mycobacteria (NTM) such as M. avium or M. abscessus in water.
Full-Text
Supplemental Data
Key_wordNon-thermal plasma, hydroxyl radical, ROS stress, Mycobacteria
References
  1. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. 2013. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol. 51: 3006-3011.
    Pubmed CrossRef Pubmed Central
  2. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797-810.
    Pubmed CrossRef
  3. Piccaro G, Pietraforte D, Giannoni F, Mustazzolu A, Fattorini L. 2014. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 58:7527-7533.
    Pubmed CrossRef Pubmed Central
  4. Vil chèze C, H artman T, W einrick B, J acobs Jr W R. 2 013. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4: 1881.
  5. Guo J, Li Z, Huang K, Li Y, Wang J. 2017. Morphology analysis of Escherichia coli treated with nonthermal plasma. J. Appl. Microbiol. 122: 87-96.
    Pubmed CrossRef
  6. Uhm HS, Choi EH, Cho GS, Hwang DH. 2013. Infl uence of reactive oxygen species on the sterilization of microbes. Curr. Appl. Phys. 13: S30-S35.
    CrossRef
  7. Daeschlein G, Napp M, Majumdar A, Richter E, RüschGerdes S, Aly F, et al. 2017. In vitro killing of mycobacteria by low temperature atmospheric pressure plasma and dielectric barrier discharge plasma for treatment of tuberculosis. Clin. Plasma Med. 5: 1-7.
    CrossRef
  8. Lee NR, Park SH, Kim JY, Kim KY, Kim DY. 2018. Inactivation efficacy of a non-thermal atmospheric pressure plasma generator against Mycobacterium tuberculosis. Korean J. Healthc. Assoc. Infect. Control Prev. 23: 80-85.
    CrossRef
  9. Hong Y C, U hm HS. 2 007. A ir pl asma j et w ith h ol olw electrodes at atmospheric pressure. Phys. Plasmas 14: 053503.
    CrossRef
  10. Hong YC, Kang WS, Hong YB, Yi WJ, Uhm HS. 2009. Atmospheric pressure air-plasma jet evolved from microdischarges:Eradication of E. coli with the jet. Phys. Plasmas 16: 123502.
    CrossRef
  11. Weltmann KD, Brandenburg R, von Woedtke T, Ehlbeck J, Foest R, Stieber M, et al. 2008. Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D Appl. Phys. 41: 194008.
    CrossRef
  12. Lu X, Jiang Z, Xiong Q, Tang Z, Hu X, Pan Y. 2008. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl. Phys. Lett. 92: 081502.
    CrossRef
  13. Flynn PB, Higginbotham S, Nid’a HA, Gorman SP, Graham WG, Gilmore BF. 2015. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int. J. Antimicrob. Agents 46: 101-107.
    Pubmed CrossRef
  14. Xiaohu L, Feng H, Ying G, Jing Z, Jianjun S. 2013. Sterilization of Staphylococcus Aureus by an atmospheric non-thermal plasma jet. Plasma Sci. Technol 15: 439.
    CrossRef
  15. Mortazavi SM, Hosseinzadeh Colagar A, Sohbatzadeh F. 2016. The efficiency of the cold argon-oxygen plasma jet to reduce Escherichia coli and Streptococcus pyogenes from solid and liquid ambient. Iran. J. Med. Microbiol. 10: 19-30.
  16. Uhm H S, L im J P, L i SZ. 2007. Steril ization of b acterial endospores by an atmospheric-pressure argon plasma jet. Appl. Phys. Lett. 90: 261501.
    CrossRef
  17. Bansal-Mutalik R, Nikaido H. 2014. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc. Natl. Acad. Sci. USA 111: 4958-4963.
    Pubmed CrossRef Pubmed Central
  18. Kolb JF, Mohamed AAH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, et al. 2008. Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 92:241501.
    CrossRef
  19. Lee CB, Na YH, Hong TE, Choi EH, Uhm HS, Baik KY, et al. 2014. Evidence of radicals created by plasma in bacteria in water. Appl. Phys. Lett. 105: 073702.
    CrossRef
  20. Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ichiki R, et al. 2011. Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci. Technol. 20: 034010.
    CrossRef
  21. Akhtar S, Sarkar S, Mishra A, Sarkar D. 2011. A method to extract intact and pure RNA from mycobacteria. Anal. Biochem. 417: 286-288.
    Pubmed CrossRef
  22. Siu GKH, Yam WC, Zhang Y, Kao RY. 2014. An upstream truncation of the furA-katG operon confers high-level isoniazid resistance in a Mycobacterium tuberculosis clinical isolate with no known resistance-associated mutations. Antimicrob. Agents Chemother. 58: 6093-6100.
    Pubmed CrossRef Pubmed Central
  23. Wu S, Howard ST, Lakey DL, Kipnis A, Samten B, Safi H, et al. 2004. The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo. Mol. Microbiol. 51: 1551-1562.
    Pubmed CrossRef
  24. Christoph VS, Christian O. 2016. The application of cold atmospheric plasma in medicine: the potential role of nitric oxide in plasma-induced effects. Clin. Plasma Med. 4: 1-8.
    CrossRef
  25. Nambi S, Long JE, Mishra BB, Baker R, Murphy KC, Ol ive AJ, et al. 2015. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe 17: 829-837.
    Pubmed CrossRef Pubmed Central
  26. Imaly JA. 2003. Pathway of oxidative damage. Annu. Rev. Microbiol. 57: 395-418.
    Pubmed CrossRef
  27. Phaniendra A, Jestadi DB, Periyasamy L. 2015. Free radicals:properties, sources, targets, and their implication in various diseases. Indian. J. Clin. Biochem. 30: 11-26.
    Pubmed CrossRef Pubmed Central
  28. Wang TY, Libardo MDJ, Angeles-Boza AM, Pellois JP. 2017. Membrane oxidation in cell delivery and cell killing applications. ACS Chem. Biol. 12: 1170-1182.
    Pubmed CrossRef Pubmed Central
  29. Kumar N, Attri P, Choi EH, Uhm HS. 2015. Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells. RSC Adv. 5: 14670-14677.
    CrossRef
  30. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, et al. 2011. Non-thermal dielectric-barrier discharge (DBD) Plasma-induced inactivation involves oxidative-DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 55: 1053-1062.
    Pubmed CrossRef Pubmed Central
  31. Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, et al. 2017. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol. 8: 681.
    Pubmed CrossRef Pubmed Central
  32. Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77: 755-776.
    Pubmed CrossRef Pubmed Central
  33. Winterbourn CC. 1995. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82: 969-974.
    CrossRef
  34. Rhee SG. 2006. H2O2, a necessary evil for cell signaling. Science 312: 1882-1883.
    Pubmed CrossRef
  35. Dobrynin D, Friedman Gr, Friedman G, Fridman A. 2009. Physical and biological mechanisms of direct plasma interaction with living tissue. New. J. Phys. 11: 115020.
    CrossRef
  36. Baik KY, Kim YH, Ryu YH, Kwon HS, Park G, Uhm HS, et al. 2013. Feeding-gas effects of plasma jets on Escherichia coli in physiological solutions. Plasma Process. Polym. 10: 235-242.
    CrossRef
  37. Voskuil MI, Bartek IL, Visconti K, Schoolnik GK. 2011. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front. Microbiol. 2: 105.
    Pubmed CrossRef Pubmed Central
  38. Tyagi P, Dharmaraja AT, Bhaskar A, Chakrapani H, Singh A. 2015. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide. Free Radic. Biol. Med. 84: 344-354.
    Pubmed CrossRef Pubmed Central
  39. Uhm HS. 2015. Generation of various radicals in nitrogen plasma and their behavior in media. Phys Plasmas. 22: 123506.
    CrossRef
  40. Uhm HS, Ki SH, Baik KY, Choi EH. 2018. Influence of oxygen on generation of reactive chemicals from nitrogen plasma jet. Sci. Rep. 8: 9318.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd