Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-8: 1255~1265

AuthorChengbo Zhang, Bo Xu, Zunxi Huang, Tao Lu
Place of dutySchool of Life Sciences, Yunnan Normal University, Kunming 650500, P.R. China,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, P.R. China
TitleMetagenomic Analysis of the Fecal Microbiomes of Wild Asian Elephants Reveals Microflora and Enzymes that Mainly Digest Hemicellulose
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-8
AbstractTo investigate the diversity of gastrointestinal microflora and lignocellulose-degrading enzymes in wild Asian elephants, three of these animals living in the same group were selected for study from the Wild Elephant Valley in the Xishuangbanna Nature Reserve of Yunnan Province, China. Fresh fecal samples from the three wild Asian elephants were analyzed by metagenomic sequencing to study the diversity of their gastrointestinal microbes and cellulolytic enzymes. There were a high abundance of Firmicutes and a higher abundance of hemicellulose-degrading hydrolases than cellulose-degrading hydrolases in the wild Asian elephants. Furthermore, there were a high abundance and a rich diversity of carbohydrate active enzymes (CAZymes) obtained from the gene set annotation of the three samples, with the majority of them showing low identity with the CAZy database entry. About half of the CAZymes had no species source at the phylum or genus level. These indicated that the wild Asian elephants might possess greater ability to digest hemicellulose than cellulose to provide energy, and moreover, the gastrointestinal tracts of these pachyderms might be a potential source of novel efficient lignocellulose-degrading enzymes. Therefore, the exploitation and utilization of these enzyme resources could help us to alleviate the current energy crisis and ensure food security.
Full-Text
Supplemental Data
Key_wordWild Asian elephant, metagenome, gastrointestinal tract, hemicellulose, enzyme resource
References
  1. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26:169-172.
    Pubmed CrossRef
  2. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. 2011. Metagenomic discovery of biomassdegrading genes and genomes from cow rumen. Science 331: 463-467.
    Pubmed CrossRef
  3. Wang C, Dong D, Wang H, Muller K, Qin Y, Wang H, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22.
    Pubmed CrossRef Pubmed Central
  4. Jose VL, More RP, Appoothy T, Arun AS. 2017. In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Syst. Appl. Microbiol. 40: 160-170.
    Pubmed CrossRef
  5. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.
    Pubmed CrossRef
  6. Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 1-8.
    CrossRef
  7. Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 42-51.
    CrossRef
  8. Li R , F an W , Tian G , Zhu H, He L, Cai J , et al. 2010. The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317.
  9. Conklin-Brittain NL. 1995. The digestive system in mammals. Food, form and function. Int. J. Primatol. 16: 699-701.
    CrossRef
  10. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6: 121-131.
    Pubmed CrossRef
  11. F lint H J, S cott K P, D uncan SH, Louis P, F orano E. 2 012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3: 289-306.
    Pubmed CrossRef Pubmed Central
  12. Shoshani J EJ. 1982. Elephas maximus. Mammalian Species 182: 78-79.
    CrossRef
  13. Samansiri KAP, Weerakoon DK. 2006. Feeding Behaviour of Asian Elephants in the Northwestern Region of Sri Lanka. Gajah.
  14. Ilmberger N, Gullert S, Dannenberg J, Rabausch U, Torres J, Wemheuer B, et al. 2014. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS One 9: e106707.
    Pubmed CrossRef Pubmed Central
  15. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65.
    Pubmed CrossRef Pubmed Central
  16. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676.
    Pubmed CrossRef
  17. Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713-714.
    Pubmed CrossRef
  18. Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38(12): e132.
    Pubmed CrossRef Pubmed Central
  19. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60.
    Pubmed CrossRef
  20. Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12: 385.
    Pubmed CrossRef Pubmed Central
  21. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Res. 32: D277-D280.
    Pubmed CrossRef Pubmed Central
  22. Kanehisa M. 1997. A database for post-genome analysis. Trends Genet. 13: 375-376.
    CrossRef
  23. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: D354-D357.
    Pubmed CrossRef Pubmed Central
  24. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, et al. 2012. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40: D284-D289.
    Pubmed CrossRef Pubmed Central
  25. Drula E, Golaconda Ramulu H, Coutinho PM, Lombard V, Henrissat B. 2013. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495.
    Pubmed CrossRef Pubmed Central
  26. Cantarel BL, Rancurel C, Coutinho PM, Bernard T, Lombard V, Henrissat B. 2008. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233-D238.
    Pubmed CrossRef Pubmed Central
  27. Terrapon N, Lombard V, Gilbert HJ, Henrissat B. 2015. Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31: 647-655.
    Pubmed CrossRef
  28. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422-1423.
    Pubmed CrossRef Pubmed Central
  29. Pritchard L, White JA, Birch PR, Toth IK. 2006. GenomeDiagram: a python package for the visualization of large-scale genomic data. Bioinformatics 22: 616-617.
    Pubmed CrossRef
  30. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, et al. 2012. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7: e38571.
    Pubmed CrossRef Pubmed Central
  31. Stahl DA, Flesher B, Mansfield HR, Montgomery L. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084.
  32. Abbott DW, Boraston AB. 2008. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 72: 301-316.
    Pubmed CrossRef Pubmed Central
  33. Reddy AP, Simmons CW, D'Haeseleer P, Khudyakov J, Burd H, Hadi M, et al. 2013. Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. PLoS One 8: e77985.
    Pubmed CrossRef Pubmed Central
  34. Saoudi B, Habbeche A, Kerouaz B, Haberra S, Romdhane ZB, Tichati L, et al. 2015. Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. Process Biochem. 50: 2259-2266.
    CrossRef
  35. Palevich N, Kelly WJ, Leahy SC, Altermann E, Rakonjac J, Attwood GT. 2017. The complete genome sequence of the rumen bacterium Butyrivibrio hungatei MB2003. Stand. Genomic Sci. 12: 72.
    Pubmed CrossRef Pubmed Central
  36. Farro E, Leite A, Silva IA, Filgueiras JG, de Azevedo ER, Polikarpov I, et al. 2018. GH43 endo-arabinanase from Bacillus licheniformis: Structure, activity and unexpected synergistic effect on cellulose enzymatic hydrolysis. Int. J. Biol. Macromol. 117: 7-16.
    Pubmed CrossRef
  37. Zhu L, Wu Q, Dai J, Zhang S, Wei F. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. USA 108: 17714-17719.
    Pubmed CrossRef Pubmed Central
  38. Gharechahi J, Salekdeh GH. 2018. A metagenomic analysis of the camel rumen's microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol. Biofuels 11: 216.
    Pubmed CrossRef Pubmed Central
  39. Svartstrom O, Alneberg J, Terrapon N, Lombard V, de Bruijn I, Malmsten J, et al. 2017. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 11: 2538-2551.
    Pubmed CrossRef Pubmed Central
  40. Gullert S, Fischer MA, Turaev D, Noebauer B, Ilmberger N, Wemheuer B, et al. 2016. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnol. Biofuels 9: 121.
    Pubmed CrossRef Pubmed Central
  41. Campanaro S, Treu L, Kougias PG, Francisci DD, Valle G, Angelidaki I. 2016. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels 9: 1-17.
    Pubmed CrossRef Pubmed Central
  42. Jami E, Israel A, Kotser A, Mizrahi I. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7: 1069-1079.
    Pubmed CrossRef Pubmed Central
  43. Armendariz-Ruiz M, Rodriguez-Gonzalez JA, Camacho-Ruiz RM, Mateos-Diaz JC. 2018. Carbohydrate Esterases: An Overview. Methods Mol. Biol. 1835: 39-68.
    Pubmed CrossRef
  44. Reilly J. 2010. Growth in the Sumatran elephant (Elephas maximus sumatranus) and age estimation based on dung diameter. Proceedings of the Zoological Society of London 258: 205-213.
    CrossRef
  45. Sukumar R. 2006. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearbook 40: 1-8.
    CrossRef
  46. Zhang W, Liu W, Hou R, Zhang L, Schmitz-Esser S, Sun H, et al. 2018. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J. 12: 1319-1328.
    Pubmed CrossRef Pubmed Central
  47. Armstrong Z, Mewis K, Liu F, Morgan-Lang C, Scofield M, Durno E, et al. 2018. Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome. ISME J. 12: 2757-2769.
    Pubmed CrossRef Pubmed Central



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd