Journal of Microbiology and Biotechnology
The Korean Society for Microbiology and Biotechnology publishes the Journal of Microbiology and Biotechnology.

2019 ; Vol.29-11: 1841~1851

AuthorH N Fernando, U R Kumarasinghe, C P Gunasekara, S K Wijekoon, A K Ekanayaka, S P Rajapaksha, S N Fernando, P M Jayaweera
Place of dutyDepartment of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura 10250, Sri Lanka
TitleSynthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles
PublicationInfo J. Microbiol. Biotechnol.2019 ; Vol.29-11
AbstractGarcinol, a well-known medicinal phytochemical, was extracted and isolated from the dried fruit rinds of Garcinia quaesita Pierre. In this study, garcinol has successfully used to reduce silver ions to silver in order to synthesize garcinol-capped silver nanoparticles (G-AgNPs). The formation and the structure of G-AgNPs were confirmed by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The antimicrobial activity of garcinol and G-AgNPs were investigated by well diffusion assays, broth micro-dilution assays and time-kill kinetics studies against five microbial species, including Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231) and clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). The formation of G-AgNPs is a promising novel approach to enhancing the biological activeness of silver nanoparticles, and to increase the water solubility of garcinol which creates a broad range of therapeutic applications.
Full-Text
Supplemental Data
Key_wordGarcinol, silver nanoparticles, garcinol capped silver nanoparticles, antimicrobial activity, time-kill kinetic studies
References
  1. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101.
    Pubmed CrossRef
  2. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4: 707-716.
    Pubmed CrossRef
  3. Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles:green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145: 83-96.
    Pubmed CrossRef
  4. El Nour KMA, Eftaiha Aa, Al Warthan A, Ammar RA. 2010. Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3: 135-140.
    CrossRef
  5. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero, et al. 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci. 103: 1931-1944.
    Pubmed CrossRef
  6. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. 2014. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomedicine 9: 2399-2407.
    Pubmed CrossRef Pubmed Central
  7. Aminov RI. 2009. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11: 2970-2988.
    Pubmed CrossRef
  8. Martinez JL. 2009. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 276: 2521-2530.
    Pubmed CrossRef Pubmed Central
  9. Ahmad I, Beg AZ. 2001. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 74: 113-123.
    CrossRef
  10. Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C. 2014. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol. 14: 197-205.
    Pubmed CrossRef Pubmed Central
  11. Hiramatsu K, Katayama Y, Matsuo M, Sasaki T, Morimoto Y, Sekiguchi A, et al. 2014. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J. Infect. Chemother. 20: 593-601.
    Pubmed CrossRef
  12. Karaiskos I, Giamarellou H. 2014. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin. Pharmacother. 15: 1351-1370.
    Pubmed CrossRef Pubmed Central
  13. Powers JH. 2003. Development of drugs for antimicrobialresistant pathogens. Curr. Opin. Infect. Dis. 16: 547-551.
    Pubmed CrossRef
  14. Burke JP. 2003. Infection control-a problem for patient safety. N. Engl. J. Med. 348: 651-656.
    Pubmed CrossRef
  15. Angulo FJ, Collignon P, Powers JH, Chiller TM, Aidara Kane A, Aarestrup FM. 2009. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin. Infect. Dis. 49: 132-141.
    Pubmed CrossRef
  16. Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. 2014. Nanomedicine in the management of microbial infection–overview and perspectives. Nano Today 9: 478-498.
    Pubmed CrossRef Pubmed Central
  17. Wang L, Hu C, Shao L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine 12: 1227-1249.
    Pubmed CrossRef Pubmed Central
  18. Yan X, He B, Liu L, Qu G, Shi J, Hu L, et al. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10: 557-564.
    Pubmed CrossRef
  19. Khan SU, Saleh TA, Wahab A, Khan MHU, Khan D, Ullah Khan W , et al. 2018. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomedicine 13: 733-762.
    Pubmed CrossRef Pubmed Central
  20. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupova J, Krystof V, et al. 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333-6340.
    Pubmed CrossRef
  21. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. 2009. Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22: 235-242.
    Pubmed CrossRef
  22. Prabhu S, Poulose EK. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2: 32-42.
    CrossRef
  23. Lara HH, Ayala-Núñez NV, Turrent LdCI, Padilla CR. 2010. Bactericidal effect of silver nanoparticles against multidrugresistant bacteria. World J. Microbiol. Biotechnol. 26: 615-621.
    CrossRef
  24. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6: 103-109.
    Pubmed CrossRef
  25. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. 2016. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12: 789-799.
    Pubmed CrossRef
  26. Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M. 2008. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 24: 192-196.
  27. Klueh U, Wagner V, Kelly S, Johnson A, Bryers J. 2000. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J. Biomed. Mater. Res. 53: 621-631.
    CrossRef
  28. Rai M, Deshmukh S, Ingle A, Gade A. 2012. Silver nanoparticles: the powerful nanoweapon against multidrugresistant bacteria. J. Appl. Microbiol. 112: 841-852.
    Pubmed CrossRef
  29. Rim K-T, Song S-W, Kim H-Y. 2013. Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf. Health Work 4: 177-186.
    Pubmed CrossRef Pubmed Central
  30. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. 2011. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology 9: 30-38.
    Pubmed CrossRef Pubmed Central
  31. Park Y, Hong Y, Weyers A, Kim Y, Linhardt R. 2011. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 5: 69-78.
    Pubmed CrossRef
  32. Lu R, Yang D, Cui D, Wang Z, Guo L. 2012. Egg whitemediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomedicine 7: 2101-2107.
    Pubmed CrossRef Pubmed Central
  33. Amooaghaie R, Saeri MR, Azizi M. 2015. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Saf. 120: 400-408.
    Pubmed CrossRef
  34. Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S. 2012. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf. B Biointerfaces 95: 235-240.
    Pubmed CrossRef
  35. Blunk T, Hochstrasser DF, Sanchez JC, Müller BW, Müller RH. 1993. Colloidal carriers for intravenous drug targeting:plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14: 1382-1387.
    Pubmed CrossRef
  36. Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H. 2012. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 46: 7037-7045.
    Pubmed CrossRef
  37. Alexander JW. 2009. History of the medical use of silver. Surg. Infect. (Larchmt) 10: 289-292.
    Pubmed CrossRef
  38. Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, et al. 2013. Garcinol, a polyisoprenylated benzophenone modulates multiple pro-inflammatory signaling cascades leading to suppression of growth and survival of head and neck carcinoma. Cancer Prev. Res. 6: 843-854.
    Pubmed CrossRef
  39. Naldoni F, Claudino A, Cruz Jr J, Chavasco J, e Silva PF, Veloso MP, et al. 2009. Antimicrobial activity of benzophenones and extracts from the fruits of Garcinia brasiliensis. J. Med. Food 12: 403-407.
    Pubmed CrossRef
  40. Liao C-H, Ho C-T, Lin J-K. 2005. Effects of garcinol on free radical generation and NO production in embryonic rat cortical neurons and astrocytes. Biochem. Biophys. Res. Commun. 329: 1306-1314.
    Pubmed CrossRef
  41. Liu C, Ho PC-L, Wong FC, Sethi G, Wang LZ, Goh BC. 2015. Garcinol: Current status of its anti-oxidative, antiinflammatory and anti-cancer effects. Cancer Lett. 362:8-14.
    Pubmed CrossRef
  42. Saadat N, Gupta SV. 2012. Potential role of garcinol as an anticancer agent. J. Oncol. 2012: 1-8.
    Pubmed CrossRef Pubmed Central
  43. Sang S, Liao C-H, Pan M-H, Rosen RT, Lin-Shiau S-Y, et al. 2002. Chemical studies on antioxidant mechanism of garcinol analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 58: 10095-10102.
    CrossRef
  44. Tang W, Pan M-H, Sang S, Li S, Ho C-T. 2013. Garcinol from Garcinia indica: chemistry and health beneficial effects. In Tropical and Subtropical Fruits: Flavors, Color, and Health Benefits. pp. 133-145. 1129th Vol. ACS Publications American Chemical Society, Washington DC, USA.
    CrossRef
  45. Socolsky C, Plietker B. 2015. Total synthesis and absolute configuration assignment of MRSA active garcinol and isogarcinol. Chemistry 21: 3053-3061.
    Pubmed CrossRef
  46. Kaur R, Chattopadhyay SK, Tandon S, Sharma S. 2012. Large scale extraction of the fruits of Garcinia indica for the isolation of new and known polyisoprenylated benzophenone derivatives. Ind. Crops Prod. 37: 420-426.
    CrossRef
  47. Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, et al. 2017. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci. Rep. 7: 530-544.
    Pubmed CrossRef Pubmed Central
  48. Ossowski T, G oulart M O, A b reu FCd, A na S , Euzébio A , Miranda P, et al. 2008. Determination of the pKa values of some biologically active and inactive hydroxyquinones. J. Braz. Chem. Soc. 19: 175-183.
    CrossRef
  49. Agnihotri S, Mukherji S, Mukherji S. 2014. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4: 3974-3983.
    CrossRef
  50. Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C. 2007. Synthesis and study of silver nanoparticles. J. Chem. Educ. 84: 322-325.
    CrossRef
  51. Peiris M, Fernando S, Jayaweera P, Arachchi N, Guansekara T. 2018. Comparison of antimicrobial properties of silver nanoparticles synthesized from selected bacteria. Indian J. Microbiol. 58: 301-311.
    Pubmed CrossRef Pubmed Central
  52. Rashid MU, Bhuiyan MKH, Quayum ME. 2013. Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ. J. Pharm. Sci. 12: 29-33.
    CrossRef
  53. Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79.
    Pubmed CrossRef Pubmed Central
  54. Tutone M, Lauria A, Almerico AM. 2016. Theoretical determination of the pK a values of betalamic acid related to the free radical scavenger capacity: comparison between empirical and quantum chemical methods. Interdiscip. Sci. 8: 177-185.
    Pubmed CrossRef
  55. Babić S, Horvat AJ, Pavlović DM, Kaštelan-Macan M. 2007. Determination of pKa values of active pharmaceutical ingredients. Trends Analyt. Chem. 26: 1043-1061.
    CrossRef
  56. Kumar N, Singh AK. 2014. Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): a review. Asian Pac. J. Trop. Biomed. 4: S22-S26.
    Pubmed CrossRef Pubmed Central
  57. Sivaraman SK, Elango I, Kumar S, Santhanam V. 2009. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97: 1055-1059.
  58. Yoosaf K, Ipe BI, Suresh CH, Thomas KG. 2007. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 111: 12839-12847.
    CrossRef
  59. Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky ME, et al. 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6: 35-44.
    Pubmed CrossRef Pubmed Central
  60. Senarathna U, Fernando S, Gunasekara T, Weerasekera M, Hewageegana H, Arachchi NDH, et al. 2017. Enhanced antibacterial activity of TiO2 nanoparticle surface modified with Garcinia zeylanica extract. Chem. Cent. J. 11: 1-7.
    Pubmed CrossRef Pubmed Central
  61. Padhye S, Ahmad A, Oswal N, Sarkar FH. 2009. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol. 2: 38-51.
    Pubmed CrossRef Pubmed Central
  62. Cuesta-Rubio O, Piccinelli AL, Rastrelli L. 2005. Chemistry and biological activity of polyisoprenylated benzophenone derivatives. In Studies in natural products chemistry. pp. 671-720. 32nd volume. Elsevier, Amsterdam, The Netherlands.
    CrossRef
  63. Tharachand C, Selvaraj CI, Abraham Z. 2015. Comparative evaluation of anthelmintic and antibacterial activities in leaves and fruits of Garcinia cambogia (Gaertn.) desr. and Garcinia indica (Dupetit-Thouars) choisy. Braz. Arch. Biol. Technol. 58: 379-386.
    CrossRef
  64. Varalakshmi K, Sangeetha C, Shabeena A, Sunitha S, Vapika J. 2010. Antimicrobial and cytotoxic effects of Garcinia indica fruit rind extract. Am. Eurasian J. Agric. Environ. Sci. 7: 652-656.
  65. Kim J-Y, Kim S-E, Kim J-E, Lee J-C, Yoon J-Y. 2005. The biocidal activity of nano-sized silver particles comparing with silver ion. J. Korean Soc. Environ. Eng. 27: 771-776.
  66. Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 39: 77-85.
  67. Chen S, Carroll DL. 2002. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2: 1003-1007.
    CrossRef



Copyright © 2009 by the Korean Society for Microbiology and Biotechnology.
All right reserved. Mail to jmb@jmb.or.kr
Online ISSN: 1738-8872    Print ISSN: 1017-7825    Powered by INFOrang Co., Ltd